Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left|\frac{1}{4}+x\right|=\frac{5}{6}\)
=> Có hai trường hợp
TH1: \(\frac{1}{4}+x=\frac{5}{6}\) TH2: \(\frac{1}{4}+x=-\frac{5}{6}\)
<=> \(x=\frac{5}{6}-\frac{1}{4}\) <=> \(x=-\frac{5}{6}-\frac{1}{4}\)
<=> \(x=\frac{10}{12}-\frac{3}{12}\) <=> \(x=-\left(\frac{10}{12}+\frac{3}{12}\right)\)
<=> \(x=\frac{7}{12}\) <=> \(x=-1\frac{1}{12}\)
Vậy: \(x=\frac{7}{12}\) hoặc \(x=-1\frac{1}{12}\)
b) \(A\left(x\right)=5x^2-3x-16\)
Thay \(x=-2\) vào đa thức A(x), ta có:
\(A\left(-2\right)=5\cdot\left(-2\right)^2-3\cdot\left(-2\right)-16\)
\(A\left(-2\right)=5\cdot4-3\cdot\left(-2\right)-16\)
\(A\left(-2\right)=20+6-16\)
\(A\left(-2\right)=10\)
Vậy giá trị của đa thức A(x) tại x =-2 là 10
c) \(A=4x^2y^2\left(-2x^3y^2\right)\)
\(A=\left[4\cdot\left(-2\right)\right]\left(x^2\cdot x^3\right)\left(y^2\cdot y^2\right)\)
\(A=\left(-8\right)x^5y^4\)
Đơn thức A có:
- Hệ số là: -8
- Phần biến là: \(x^5y^4\)
- Bậc là: 9
a)
1/4+x=5/6 hoặc -5/6
1/4+x=5/6 suy ra x=7/12
1/4+x=-5/6 suy ra x=-13/12
b) thay x=-2 vào
suy ra A=5.(-2)2-3.(-2)-16
=10
c) A=-8x5y4. Hệ số -8. Biến x5y4. Bậc 9
Bài dễ sao ko động não tí đi
Đối với bài này, ta sẽ xét các khoảng giá trị của x :
- Với \(x< -1\Rightarrow\hept{\begin{cases}x+1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x-3\right|=3-x\end{cases}}}\)
Khi đó , \(E=2\left(3-x\right)+-x-1-5=-3x\)
- Với \(x>3\Rightarrow\hept{\begin{cases}x-3>0\\x+1>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left|x-3\right|=x-3\\\left|x+1\right|=x+1\end{cases}}\)
Khi đó, \(E=2\left(x-3\right)+\left(x+1\right)-5=3x-10\)
- Với \(-1\le x\le3\Rightarrow\hept{\begin{cases}x-3\le0\\x+1\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left|x-3\right|=3-x\\\left|x+1\right|=x+1\end{cases}}\)
Khi đó \(E=2\left(3-x\right)+\left(x+1\right)-5=-x+2\)
Vậy .....
Viết thế này gọn hơn của Ngọc xíu:
\(E=\hept{\begin{cases}x< -1\mid:2\left(3-x\right)-\left(x+1\right)-5\\-1\le x< 3\mid:2\left(3-x\right)+x+1-5\\x\ge3\mid2:\left(x-3\right)+x+1-5\end{cases}=\hept{\begin{cases}x< -1\mid:-3x\\-1\le x< 3\mid:-x+2\\x\ge3\mid:3x-10\end{cases}}}\)
a) P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x)
= 7x2 . x2 + 7x2 . (-5x) + 7x2 . 2 – [5x. x3 + 5x . (-7x2) + 5x . 3x]
= 7. (x2 . x2) + [7.(-5)] . (x2 . x) + (7.2).x2 – {5. (x.x3) + [5.(-7)]. (x.x2) + (5.3).(x.x)}
= 7x4 + (-35). x3 + 14x2 – [ 5x4 + (-35)x3 + 15x2 ]
= 7x4 + (-35). x3 + 14x2 - 5x4 + 35x3 - 15x2
= (7x4 – 5x4) + [(-35). x3 + 35x3 ] + (14x2 - 15x2 )
= 2x4 + 0 - x2
= 2x4 – x2
b) Thay x = \( - \dfrac{1}{2}\) vào P(x), ta được:
P(\( - \dfrac{1}{2}\)) = 2. (\( - \dfrac{1}{2}\))4 – (\( - \dfrac{1}{2}\))2 \))
\(\begin{array}{l} = 2.\dfrac{1}{{16}} - \dfrac{1}{4} \\ = \dfrac{1}{8} - \dfrac{{2}}{8} \\ = \dfrac{-1}{8} \end{array}\)
a: Khi x=-1 thì \(A=\left|-1-2\right|+\left(-1\right)+3=3+3-1=5\)
b: KHi x<2 thì x-2<0
=>A=2-x+x+3=5