Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)
Mk lm giúp câu a , các câu cn lại tương tự nha bn
\(A=ax^3+bx^2-3x-2\)
\(B=\left(x-1\right)\left(x+2\right)=x^2+x-2\)
Gọi C là thương của phép chia A cho B
=> A = B.C
Đa thức A có bậc 3 chia cho đa thức B có bậc 2 sẽ được thương có bậc 1
=> C có dạng \(cx+d\)
=> \(ax^{3\:}+bx^2-3x-2=\left(x^2+x-2\right)\left(cx+d\right)\)
\(\Rightarrow ax^{3\:}+bx^2-3x-2=cx^3+dx^2+cx^2+dx-2cx-2d\)
\(\Rightarrow ax^{3\:}+bx^2-3x-2=cx^3+\left(d+c\right)x^2+\left(d-2c\right)x-2d\)
\(\Rightarrow\left\{{}\begin{matrix}ax^{3\: }=cx^3\\bx^2=\left(d+c\right)x^2\\-3x=\left(d-2c\right)x\\-2=-2d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c\\d+c=b\\d-2c=-3\\d=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=c\\d+c=b\\1-2c=-3\\d=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c\\c+d=b\\c=2\\d=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2+1=3\\c=2\\d=1\end{matrix}\right.\)
Vậy \(A=2x^3+3x^2-3x-2\)
a) Theo đề bài, ta có:
\(x^4+x^3+2x^2-7x-5=\left(x^2+2x+5\right)\left(x^2+bx+c\right)\)
\(\Rightarrow x^4+x^3+2x^2-7x-5=x^4+\left(b+2\right)x^3+\left(2b+c+5\right)x^2+\left(5b+2c\right)x+5c\)
Suy ra: \(\left\{\begin{matrix}b+2=1\\2b+c+5=2\\5b+2c=-7\\5c=-5\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}b=-1\\c=-1\end{matrix}\right.\)
b) Theo đề bài, ta có:
\(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)
\(\Rightarrow x^4-2x^3+2x^2-2x+a=x^4+\left(b-2\right)x^3+\left(c-2b+1\right)x^2+\left(b-2c\right)x+c\)
Suy ra: \(\left\{\begin{matrix}b-2=-2\\c-2b+1=2\\b-2c=-2\\c=a\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=1\\b=0\\c=1\end{matrix}\right.\)
Có A=\(\left(x^3+x^2-3x\right)+\left(-2x^2-2x+a+2\right)=-x\left(-x^2-x+3\right)-2x^2-2x+a+2⋮-x^2-x+3\)
\(\Rightarrow C=-2x^2-2x+a+2⋮B\). Chỉ có thể C=\(2\left(-x^2-x+3\right)\Rightarrow a+2=6\Rightarrow a=4\)
\(A=\left(2x^3+3x^2+4x\right)+\left(-10x^2-15x+a-8\right)=x\left(2x^2+3x+4\right)+\left(-10x^2-15x+a-8\right)⋮2x^2+3x+4\)\(\Rightarrow C=-10x^2-15x+a-8⋮2x^2+3x+4\)
Chỉ có thể C=\(-5\left(2x^2+3x+4\right)\) \(\Rightarrow a-8=-20\Rightarrow a=-12\)
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)
Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)
Mà do \(n\in N\Rightarrow n^2+10-6n=1\)
\(\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\)
\(\Leftrightarrow n-3=0\)
\(\Leftrightarrow n=3\)
Vậy n=3.
Hệ số cao nhất là 7 bạn nhé !
Mình đag cần gấp giúp mình zớii ạ ><