K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

Câu 1

a)

Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)

\(\Leftrightarrow x\ge1\)

b)

Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)

c)

Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B

d)

Vô lý vcl

Câu 2

Xài BĐT Bunhiacopski:

\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)

\(\Rightarrow A\le39\)

26 tháng 7 2020

Câu 1:

a) A=\(\sqrt{2x^2-3x+1}\)

ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)

b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)

ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)

=>\(x\ge1\)

c) Với \(x\ge1\)thì A=B đc xác định

d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa

30 tháng 7 2019

a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)

\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)

Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)

hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)

A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)

+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

30 tháng 7 2019

c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

Vậy \(x\ge1\)thì A = B

d) \(x\le\frac{1}{2}\)

13 tháng 7 2016

a) A có nghĩa \(\Leftrightarrow\left(3x+1\right)\left(x-2\right)\ge0\) \(\Leftrightarrow\hept{\begin{cases}3x+1\ge0\\x-2\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}3x+1\le0\\x-2\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\le-\frac{1}{3}\\x\ge2\end{cases}}\)

B có nghĩa \(\Leftrightarrow\hept{\begin{cases}3x+1\ge0\\x-2\ge0\end{cases}}\Leftrightarrow x\ge2\)

b) Dễ thấy với x = -1/3 và x = 2 thì A = B

c) \(x\le-\frac{1}{3}\) thì A có nghĩa, B không có nghĩa

Đơn giản vậy thôi nhé Thảo ^^

28 tháng 7 2016

a)ĐK:\(\begin{cases}x^2-1\ge0\\x^2-2\sqrt{x^2-1}\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x^2\ge1\\x^2\ge2\sqrt{x^2-1}\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^4\ge4\left(x^2-1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge1\\x^4-4x^2+4\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\\left(x^2-2\right)^2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^2-2\ge0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge1\\x^2\ge2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge\sqrt{2}\end{cases}\)\(\Leftrightarrow x\ge\sqrt{2}\)

b)Có \(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)

\(=\sqrt{\left(x^2-1\right)+2\sqrt{x^2-1}+1}-\sqrt{\left(x^2-1\right)-2\sqrt{x^2-1}+1}\)

\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

\(=\sqrt{x^2-1}+1-\left|\sqrt{x^2-1}-1\right|\)

Vói \(x\ge1\) thì A=\(\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=\sqrt{x^2-1}+1-\sqrt{x^2-1}+1=2\)

Với \(\sqrt{2}< x< 1\) thì 

                \(A=\sqrt{x^2-1}+1-\left(1-\sqrt{x^2-1}\right)=\sqrt{x^2-1}+1-1+\sqrt{x^2-1}=2\sqrt{x^2-1}\)

22 tháng 6 2016

ui mk nhầm chỗ cuối kết quả A=2 nhé

22 tháng 6 2016

bài 1 

a) ĐKXĐ : bạn tự tìm nhé 

b) ta có A=\(\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

               =\(\sqrt{\left(\sqrt{x^2-1}+1\right)^2}+\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

               =\(\left|\sqrt{x^2-1}+1\right|+\left|\sqrt{x^2-1}-1\right|\)

              =\(\sqrt{x^2-1}+1+\sqrt{x^2-1}-1\)( vì \(\left|x\right|\ge\sqrt{2}\))

              =\(2\sqrt{x^2-1}\)     

7 tháng 7 2017

a) A có nghĩa khi (2x+3)/(x-3)>= 0

Trường hợp 1:

2x+3>=0 

x>= -3/2(1)

×-3>0

x>3(2)

Từ (1),(2)suy ra x>3

●trường hợp 2

 2x+3<= 0

x<=-3/2(3)

x-3<0

x<3(4)

Từ (3),(4) suy ra x<=-3/2

Vậy khi x<=-3/2 hoặc x>3 thì A có nghĩa

B có nghĩa khi (2x+3)/(x_3)>=0

•TH1:

2x+3>=0

x>= -3/2(5)

x-3>0

x>3(6)

Từ (5),(6) suy ra x>3

•TH2:

2x+3<=0

x<=-3/2

Vậy khi x<=-3/2 hoặc x>3 thì B có nghĩa

b) A=B khi x<= -3/2 và x>3