Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{2x-3y}{2.2-3.3}=\frac{3x+4y}{3.2+4.3}\)
\(P=\frac{2x-3y}{3x+4y}=\frac{-5}{18}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
Khi đó \(P=\frac{2x-3y}{3x+4y}=\frac{2\cdot2k-3\cdot3k}{3\cdot2k+4\cdot3k}=\frac{4k-9k}{6k+12k}=\frac{-5k}{18k}=-\frac{5}{18}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
a)Đặt x/2=y/5=z/7=k suy ra x=2k, y=5k, z=7k> Thay vào A ta được kết quả là 4/5.
b)Vì x/3=y/4 nên x/15=y/20.Vì y/5=z/6 nên y/20=z/24
Suy ra:x/15=y/20=z/24.Tương tự phần a) đặt k rồi tính kết quả.
a)Ta có:Ta có x/5 = y/4 = z/3
Dễ thấy : y/4 = 2y/8 = -2y/-8 và z/3 = 3z/9
Suy ra : x/5 = y/4 = z/3 => x/5 = 2y/8 = 3z/9 = (x + 2y + 3z)/(5 + 8 + 9) = (x + 2y + 3z)/22
(tính chất của dãy tỉ số bằng nhau)
Tương tự : x/5 = -2y/-8 = 3z/9 = (x - 2y + 3z)/(5 - 8 + 9) = (x- 2y + 3z)/6
Ta có : (x + 2y + 3z)/22 = (x - 2y + 3z)/6 (cùng bằng x/5)
=> (x + 2y + 3z)/(x - 2y + 3z) = 22/6 = 11/3
b)cho x/3=y/4 va y/5=z/6.tinh M=2x+3y+4z/3x+4y+5z? | Yahoo Hỏi & Đáp
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)
\(=2x^2-10xy+8y-2x^2-14xy\)
\(=10xy+8y-14xy\)
\(=-4xy+8y\)
\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)
\(=-4.\frac{-1}{2}+6\)
\(=2+6=8\)
\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)
\(=-2y-2xy\)
thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có
\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)
nếu có sai bn thông cảm
1. Để \(A_{min}\)thì \(x^4_{min}\)và \(2.x^2_{min}\) => \(x_{min}\) => \(x=0\)
Thay x vào ta có:\(A_{min}=0^4+2.0^2-7\)
\(A_{min}=0+0-7\)
\(A_{min}=-7\)
2. Ta có điểm M(1;5) => y=5;x=1
Thay x=1;y=5 vào ta có: \(5=a.1\)
=> a=5
4. Ta có: \(\frac{4x-9}{3x+y}-\frac{4y+9}{3y+x}=\frac{4x-\left(x-y\right)}{3x+y}-\frac{4y+\left(x-y\right)}{3y+x}\)
\(=\frac{4x-x+y}{3x+y}-\frac{4y+x-y}{3y+x}\)
\(=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}\)
\(=1-1\)
\(=0\)
ban co bi gi ko lam thi phai cho mot it $ chu neu ko con lau ma lam cho
\(\frac{x}{2}=\frac{y}{3}\Rightarrow3x=2y\Rightarrow\frac{9}{2}x=y\)
\(\Rightarrow\)4y = 18x
P= \(\frac{2x-3y}{3x+4y}=\frac{2x-\frac{9}{2}x}{3x+18x}=\frac{\frac{-5}{2}x}{21x}=-\frac{5}{42}\)