Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x.\sqrt{\frac{2}{5}}\) = \(\sqrt{x^2}.\sqrt{\frac{2}{5}}\) = \(\sqrt{\frac{x^2.2}{5}}\)
b, \(\left(x-5\right).\sqrt{\frac{x}{25-x^2}}\)= \(\sqrt{\left(x-5\right)^2}\). \(\sqrt{\frac{x}{\left(5-x\right)\left(5+x\right)}}\) = \(\sqrt{\frac{\left(x-5\right)^2.x}{\left(x-5\right)\left(x+5\right)}}\)= \(\sqrt{\frac{x.\left(x-5\right)}{x+5}}\)
c,\(x.\sqrt{\frac{7}{x^2}}\) = \(\sqrt{x^2}\). \(\sqrt{\frac{7}{x^2}}\) = \(\sqrt{\frac{x^2.7}{x^2}}\) = \(\sqrt{7}\)
a, \(x^2-6=x^2-\sqrt{6^2}=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
b, \(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}x+\sqrt{3}=\left(x+\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
c, \(x^2-2\sqrt{5}x+5=x^2-2\sqrt{5}x+\sqrt{5}=\left(x-\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x-\sqrt{5}\right)\)
ta có (x-1)(x-2)(x-3)(x-4)-15=(x-1)(x-4)(x-2)(x-3)-15=\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)-15\)(*)
đặt \(t=x^2-5x+5\)thì pt (*) =\(\left(t-1\right)\left(t+1\right)-15=t^2-1-15\)\(=t^2-16=\left(t+4\right)\left(t-4\right)=\)\(\left(x^2-5x+5+4\right)\left(x^2-5x+5-4\right)=\)\(\left(x^2-5x+9\right)\left(x^2-5x+1\right)\)
Bài làm
\(3\sqrt{x}=\sqrt{x}+3\Leftrightarrow3\sqrt{x}-\sqrt{x}=3\Leftrightarrow2\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\)
\(3\sqrt{x}=3+\sqrt{x}\)
\(\Leftrightarrow3\sqrt{x}-\sqrt{x}-3=0\)
\(\Leftrightarrow\left(3\sqrt{x}-\sqrt{x}\right)-3=0\)
\(\Leftrightarrow2\sqrt{x}-2=1\)
\(\Leftrightarrow2\left(\sqrt{x}-1\right)=1\)
\(\Leftrightarrow\sqrt{x}-1=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=1+\frac{1}{2}\Leftrightarrow\sqrt{x}=\frac{3}{2}\)
\(\Leftrightarrow x=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
Vậy \(x=\frac{9}{4}\)
Chúc bạn học tốt