Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sqrt{x}+\sqrt{x+7}+2\sqrt{x^2+7x}=35-2x\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+2\sqrt{x\left(x+7\right)}=35-2x\)
Đặt \(a=\sqrt{x}\); \(b=\sqrt{x+7}\) \(\left(a,b\ge0\right)\), ta được:
\(a+b+2ab+2a^2=35\) \(\Leftrightarrow a+2a^2+b+2ab=35\)
\(\Leftrightarrow a\left(1+2a\right)+b\left(1+2a\right)=35\)\(\Leftrightarrow\left(1+2a\right)\left(a+b\right)=35\)
Đến đây bạn chia trường hợp để giải nha
b/ \(P=\frac{1+2x}{1-\sqrt{1+2x}}-\frac{1-2x}{1-\sqrt{1-2x}}\)\(=\frac{\left(1+2x\right)\left(1+\sqrt{1+2x}\right)}{-2x}-\frac{\left(1-2x\right)\left(1+\sqrt{1-2x}\right)}{2x}\)
Tới đây bạn tự làm được k
Câu a ra đến (1+2a)(a+b)=35 rồi giải thế nào vậy bạn. Mình cảm ơn
a) câu a bạn cho 2 cái căn ở cuối làm j thế
hiệu bằng 0 rồi mà?
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
ĐKXĐ:...
\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-\sqrt{2x-1}}=2\)
\(\Leftrightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)
TH1: \(\sqrt{2x-1}-1\ge0\Rightarrow x\ge1\) ta được:
\(\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\)
\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\)
TH2: \(\sqrt{2x-1}-1< 0\Rightarrow\frac{1}{2}\le x< 1\) ta được:
\(\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)
\(\Rightarrow2=2\) (luôn đúng)
Vậy nghiệm của pt là \(\frac{1}{2}\le x\le1\)
Giải pt mà bạn ơi