Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(ax^2+bx+c=0\) vô nghiệm
=> \(\Delta=b^2-4ac< 0\)
=> \(b^2< 4ac\)=> c>0
MÀ \(4ac\le\frac{\left(4a+c\right)^2}{4}\left(hđt\right)\)
=> \(\left(4a+c\right)^2>4b^2\)
Lại có a,b,c>0
=> \(4a+c>2b\)
=> \(a+b+c>3\left(b-a\right)\)=> \(\frac{a+b+c}{b-a}>3\left(đpcm\right)\)
làm xong rồi thì please_sign
áp dụng bđt huyền thoại \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\) =\(\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\)
mà \(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\) (tụ cm nhé )
\(\Rightarrow\ge\frac{\left(a+b+c^2\right)}{\frac{\left(ab+bc+ac\right)^2}{3}}=\frac{3\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)}{\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)}\)
m,à \(\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2+ab+bc+ac+ab+bc+ac\right)^3}{3^3}\)
=\(\frac{\left(\left(a+b+c\right)^2\right)^3}{27}=27\)
\(\Rightarrow vt\ge\frac{27\left(a^2+b^2+c^2\right)}{27}=a^2+b^2+c^2\)
dau = khi a=b=c=1
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{ba+bc}+\frac{c^4}{ca+cb}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)
C.m BĐT phụ \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
tịt ??????????????????????????????????????????????????______________________?????????????????????????????????????????????
ai trả lời bài này hộ tui cái !!!