Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(VP=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=VT\)
\(\RightarrowĐPCM\)
VT = x3 + y3 ( HĐT số 6 )
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y ) = VP
=> đpcm
a) \(x^2-y^2=x^2-xy+xy-y^2=x.\left(x-y\right)+y.\left(x-y\right)=\left(x+y\right)\left(x-y\right)\)
b) \(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\)
1/
\(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x=2y\) (do \(x+y\ne0\))
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
2/
\(x^4-30x^2+31x-30=0\)
\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)
\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-30=0\\x^2-x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+6\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
\(x+y=1\Rightarrow\left\{{}\begin{matrix}y-1=-x\\x-1=-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=x^2\\\left(x-1\right)^2=y^2\end{matrix}\right.\)
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-y^2-3x+x^2+3y}{\left(xy\right)^2+3x^3+3y^3+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{\left(x-y\right)\left(x+y\right)-3x+3y}{\left(xy\right)^2+3\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-2\left(x-y\right)}{\left(xy\right)^2+3}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=0\)
A = (x - y)2 = (x + y)2 - 4xy
= 42 - 4.3 = 4
B = x2 + y2 = (x + y)2 - 2xy
= 42 - 2.3 = 10
C = x4 + y4 = (x2 + y2)2 - 2x2y2
= 102 - 2.32 = 82
D = x3 + y3 = (x + y)3 - 3xy(x + y)
= 43 - 3.3.4 = 40
E = x6 + y6 = (x2 + y2)3 - 3x2y2(x2 + y2)
= 103 - 3.32.10 = 730
Sửa đề : x3 + y3 - xy( x + y ) = ( x + y )( x - y )2
x3 + y3 - xy( x + y )
= x3 + y3 - x2y - xy2
= x3 + 3x2y + 3xy2 + y3 - 4x2y - 4xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - 4xy( x + y )
= ( x + y )3 - 4xy( x + y )
= ( x + y )[ ( x + y )2 - 4xy ]
= ( x + y )( x2 + 2xy + y2 - 4xy )
= ( x + y )( x2 - 2xy + y2 )
= ( x + y )( x - y )2
=> đpcm