Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)
ĐKXĐ:x\(\ge\)1
M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)
Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)
=>không tồn tại GTLN của M
---câu thứ 2 đọc đề không hiểu---
2.ĐKXĐ:x>-1
\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)
Áp dụng BĐT cosi cho 2 số dương
\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)
Dấu = xảy ra khi x+1=2<=>x=1
=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1
ta có:
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
ta thấy: \(\sqrt{x}\ge0\rightarrow\sqrt{x}+1\ge1\\ \rightarrow\dfrac{1}{\sqrt{x}+1}\le1\\ \rightarrow\dfrac{2}{\sqrt{x}+1}\le2\\ \rightarrow\dfrac{-2}{\sqrt{x}+1}\ge-2\\ \rightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\\ \rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\ge-1\)
dấu "=" xảy ra khi x = 0
vậy tại x = 0 thì GTNN của \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) bằng -1
\(M=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu = xảy ra khi x=0
\(y=\sqrt{x-1}+\sqrt{9-x}\)(đk: \(9\ge x\ge1\))
=> \(y\ge\sqrt{x-1+9-x}=\sqrt{8}\)
Dấu "=" xảy ra khi x =1 hoặc x= 9
Vậy y min = \(\sqrt{8}\)khi x =1 hoặc x = 9
a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
b: \(P=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=1/4