Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)
<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)
<=> \(X^2=8-4\sqrt{2}\)
<=> \(X^2-8=-4\sqrt{2}\)
=> \(X^4-16X+64=32\)
<=> \(X^4-16X^2+32=0\)
Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)
\(\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\dfrac{2-\sqrt{3}}{4-3}+\dfrac{2+\sqrt{3}}{4-3}=2-\sqrt{3}+2+\sqrt{3}=4\)
Trả lời:
\(A=\sqrt{3}-\frac{\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(A=\sqrt{3}+\frac{\sqrt{6}}{\sqrt{2}-1}-\frac{2\sqrt{2}+2}{\sqrt{2}+1}\)
\(A=\sqrt{3}+\frac{\sqrt{6}.\left(\sqrt{2}+1\right)}{2-1}-\frac{2.\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(A=\sqrt{3}+\sqrt{6}.\left(\sqrt{2}+1\right)-2\)
\(A=\sqrt{3}+\sqrt{12}+\sqrt{6}-2\)
\(A=\sqrt{3}+2\sqrt{3}+\sqrt{6}-2\)
\(A=3\sqrt{3}+\sqrt{6}-2\)
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
3x-2=2-√3
3x=2-2√3
3x=0√3
x=0:3
X=0
\(\sqrt{3x-2}\) = 2 - \(\sqrt{3}\)
\(\sqrt{3}\approx1,7\)
\(\sqrt{3x-2}=0,3\)
=> 3x - 2 = 0,32 = 0,9
3x = 0,9 + 2 = 2,9
x = 2,9 : 3
\(x\approx0,9\left(6\right)\)