Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi gấp rưỡi = 1,5= 15/10= 3/2
Nửa chu vi hình chữ nhật là:
400:2=200 (m)
Chiều dài cái ao hình chữ nhật là:
200:(3+2)x3=120
Diện tích cái ao hình chữ nhật là:
120x(200-120)=9600 (m2)
Diện tích của cái ao là:
9600:100x3=288 (m2)
Vậy diện tích còn lại của mảnh vườn bằng:
9600-288=9312 (m2)
Từ một điểm S ở ngoài đt (o) kẻ tiếp tuyến SA và một các tuyến SBC ( góc BAC <90) Phân giác góc BAC cắt BC tại D và cắt đt tại điểm thứ hai là E Cac tiếp tuyến của đt (o) tại C và E cắt nhau tại N. P là giao điểm AE và CN
CM a ) SA =SD B) EN//BC C) \(\frac{1}{cn}=\frac{1}{cp}+\frac{1}{cd}\) ANH CHỊ GIÚP E VỚI Ạ CÂU C Í Ở MATHONLINE KHÔNG AI GIÚP EM MỚI SANG ĐÂY
Gọi x là chiều rộng của vườn hoa (\(x > 0\), tính bằng đơn vị mét)
Theo giả thiết ta có chiều dài là \(15 - x\)
Diện tích của vườn hoa có phương trình như sau \(f\left( x \right) = x\left( {15 - x} \right) = - {x^2} + 15x\)
Ta có bất phương trình thỏa mãn bài toán như sau:\( - {x^2} + 15x \ge 50 \Leftrightarrow - {x^2} + 15x - 50 \ge 0\)
Xét tam thức \(g\left( x \right) = - {x^2} + 15x - 50\) có hai nghiệm phân biệt là \({x_1} = 5;{x_2} = 10\) và \(a = - 1 < 0\) nên \(g\left( x \right) > 0\) khi x thuộc đoạn \(\left[ {5;10} \right]\)
Vậy khi chiều rộng nằm trong đoạn \(\left[ {5;10} \right]\) mét thì diện tích vườn hoa ít nhất là 50 \({m^2}\).
Giải:
2/3 cây cam = 3/5 cây quýt và = 6/7 cây vải thều hay 6/9 cây cam = 6/10 cây quýt = 6/7 cây vải thều
Vậy số cây cam chiếm 9 phần, số cây quýt chiếm 10 phần và số cây vải thều chiếm 7 phần.
Số cây cam là: 1950 : ( 9 + 10 + 7 ) * 9 = 675 ( cây )
Số cây quýt là: 1950 : (9 + 10 + 7 ) * 10= 750 (cây)
Số cây vải thều là: 1950 - ( 675 + 750 ) = 525 (cây)
Đ/S: Cam : 675 cây ; quýt : 750 cây ; vải thều : 525 cây .
+) Số cách chọn 3hs bất kì trong 34hs là: \(C_{34}^3\) ( cách chọn)
+) Số cách chọn 3hs nam trong 34hs là: \(C_{18}^3\) ( cách chọn)
+) Số cách chọn 3hs nữ trong 34hs là: \(C_{16}^3\) ( cách chọn)
+) Số cách chọn 3hs gồm cả nam và nữ trong 34hs là: \(C_{34}^3 - C_{18}^3 - C_{16}^3 = 4608\) ( cách chọn)
Số cây cần là: \(\frac{100}{4}=25\)