Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
\(A=\frac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}=\frac{\left(101+1\right).101\div2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
\(A=\frac{5151}{1+1+...+1+1}=\frac{5151}{51}=101\)(51 số hạng 1)
\(\sqrt[]{^{ }_{ }_{ }|^{ }_{ }\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\begin{matrix}&&&&&\\&&&&&\\&&&&&\\&&&&∄&\\&&&&&\end{matrix}\right.ℤ}\)
A= 1+3+3^2+...+3^100
3A=3x( 1+3+3^2+...+3^100 )
3A-A=(3+3^2+...+3^101)-( 1+3+3^2+...+3^100 )
2A=3^101-1
A= \(\frac{3^{101}-1}{2}\)
B= 1+3^2+3^4+...+3^100
\(3^2B\)= 3^2x( 1+3^2+3^4+...+3^100)
9B-B= (3^2+3^4+..+3^102)-( 1+3^2+3^4+...+3^100 )
8B= 3^102-1
B=\(\frac{3^{102}-1}{8}\)
B=\(\frac{3737.43-4343.37}{2+4+6+..+100}=\frac{101.37.43-101.43.37}{2+4+6+...+100}\)=\(\frac{101\left(37.43-43.37\right)}{2+4+6+...100}=\frac{0}{2+4+6+...+100}\)=0
C=\(\frac{101+100+99+...+2+1}{101-100+99-98+...+3-2+1}=\frac{\left(101+1\right)101:2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)(dưới mẫu có 51 số 1)
=\(\frac{5151}{51}\)=101
tinh tong a