Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiến thức: một số chính phương là một số chia hết cho 4 hoặc chia 4 dư 1
Bài giải
a) A = 3 + 32 + 33 + 34 +...+ 319 + 320
A = (3 + 32) + (33 + 34) +...+ (319 + 320)
A = (3.1 + 3.3) + (33.1 + 33.3) +...+ (319.1 + 319.3)
A = [3.(1 + 3)] + [33.(1 + 3)] +...+ [319.(1 + 3)]
A = 3.4 + 33.4 +...+ 319.4
A = (3 + 33 +...+ 319).4 chia hết cho 4
Vì A chia hết cho 4
Suy ra A là một số chính phương
b) B = 11 + 112 + 113
B = 11 + (112 + 113)
B = 11 + (112.1 + 112.11)
B = 11 + [112.(1 + 11)]
B = 11 + 112.12
Vì 112.12 chia hết cho 4
và 11 chia 4 dư 3
Nên B không phải là một số chính phương
Vậy B không phải là một số chính phương
a) A = 3 + 32 + 33 + ... + 320
Các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9
=> 32; 33; ...; 320 chia hết cho 9
=> 32 + 33 + ... + 320 chia hết cho 9
Mà 3 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
Câu b tương tự
số chính phương là số có số mũ là 2
B=11 + 11^2+11^3
B . 11 = (11.11) + (11^2 . 11) + (11^3 . 11)
B . 11 = 11^2 + 11^3 +11^4
B .11 -B =(11^2 +11^3+11^4) - (11 + 11^2 +11^3)
B=(11^2-11^2) + (11^3 -11^3) + (11^4 - 11)
B=0+0+11^4-11
B=11^4 - 11
Ta co : 11^4 =11^2 + 11^2
Suy ra : 11^4 là số chính phương vì 11 ko phải là số chính phương
Suy ra : 11^4 +11 ko phải là số chính phương
vay B ko phai la so chinh phuong
mk nhanh nhất tick mk nha
a)
A=3 +3^2 +3^3+...+3^20
đổ 3 chia hết cho 3, không chia hết cho 9
lại có 3^2 chia hết cho 9, 3^3 chia hết cho 9,...,3^20 chia hết cho 9
=>A chia hết cho 3 không chia hết cho 9
=>A không là SCP
b)
B=11+11^2+11^3
T.tự B chia hết cho 11,không chia hết cho 121
=>B không là SCP
a/ tính 3A rùi trừ cho A đc bao nhiêu chia cho 2 ra A
b/ tính 11B trừ cho B chia 10
a) Ta có: \(A=3+3^2+3^3+...+3^{20}\)
\(=3\left(1+3^2+3^3+...+3^{19}\right)⋮3\)
Mà A không chia hết cho 9 nên
A không phải số chinhd phương
b) Tương tự với 11
a) Ta có: \(A=3+3^2+3^3+...+3^{20}\)
\(=3\left(1+3+3^2+...+3^{19}\right)⋮3\)
Mà A không chia hết cho 9
=> A không phải là số chính phương
a) A = 3 + 32 + 33 + ... + 320
Do các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9 => 32; 33; ...; 320 đều chia hết cho 9
=> 32 + 33 + ... + 320 chia hết cho 9
Mà 3 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
Câu b tương tự