Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Căng, sự thật là nó rất căng
Nhg dù sao thì.....
1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)
Xét \(A\left(x\right)=0\)
\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)
\(\Rightarrow-3x^2-12x+15=0\)
\(\Rightarrow-3x^2+3x-15x+15=0\)
\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)
Đó là những j mình biết
1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)
\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)
2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)
tương tụ lm tiếp nhe buồn ngủ quá rồi !
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)
a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )
b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )
c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )
d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )
e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )
f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )
Bài 1:
Đề sai bạn ơi, phải là A(x)=x3-2x2+x-5
a, \(A\left(x\right)+B\left(x\right)=x^3-2x^2+x-5-x^3+2x^2+3x-9\)\(=4x-16\)
\(A\left(x\right)-B\left(x\right)=x^3-2x^2+x-5+x^3-2x^2-3x+9\)\(=2x^3-4x^2-2x+4\)
b, \(A\left(x\right)+B\left(x\right)=4x-16=4\left(x-4\right)\)\(\Rightarrow x=4\)
Vậy nghiệm của A(x)+B(x) là 4
Bài 2:
a, \(C\left(x\right)=-8x^4+5x^4+2x^3-4x^3+x^2+x+5\)\(=-3x^4-2x^3+x^2+x+5\)
\(D\left(x\right)=3,5+x^4-4x^3-4x^3+7-2x^4-3x^5\)\(=-3x^5+x^4-2x^4-4x^3-4x^3+3.5+7\)
\(=-3x^5-x^4-8x^3+10,5\)
b, \(C\left(x\right)+D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(-3x^5-x^4-8x^3+10,5\)\(=-3x^5-4x^4-10x^3+x^2+x+15,5\)
\(Q\left(x\right)=\)\(C\left(x\right)-D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(+3x^5+x^4+8x^3-10,5\)
\(=3x^5-2x^4+6x^3+x^2+x-5,5\)
c, \(D\left(x\right)=\)\(-3x^5-x^4-8x^3+10,5\)(not ra)