K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

có phải phép tính là 

\(\frac{1}{2}+\frac{1}{5}x0+vôcực\)

ko bạn nếu đúng thì kết quả là vô cực

23 tháng 12 2021

Mình ko chắc

Mình mới học lớp 4

mình chỉ biết là 0 thôi

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({S_n} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 2} \right] = 2700\;\)

 \( \Leftrightarrow \frac{n}{2}\left( {8 + 2n} \right) = 2700\;\)

\( \Leftrightarrow {n^2} + 4n - 2700 = 0\;\)

\( \Leftrightarrow \left[ \begin{array}{l}n =  - 54(L)\\n = 50(TM)\end{array} \right.\)

Vậy phải lấy tổng 50 số hạng đầu 

25 tháng 5 2017

Gọi 3 số hạng của cấp số cộng là: \(5;5+d;5+2d\)
Gọi 3 số hạng của cấp số nhân là: \(5;5q;5q^2\).
Ta có hệ sau:\(\left\{{}\begin{matrix}5+2d=5q^2\\5+d=5q+10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5+2d=5q^2\\d=5q+5\end{matrix}\right.\)\(\Rightarrow5+2.\left(5q+5\right)=5q^2\)\(\Rightarrow\left\{{}\begin{matrix}q=-1\\q=3\end{matrix}\right.\).
Với \(q=-1\) thì \(d=5.q+5=5.\left(-1\right)+5=0\).
Với \(q=3\) thì \(d=5.q+5=5.3+5=20\).
Vậy
Với \(q=-1\):
3 số hạng của cấp số cộng là: 5; 5; 5.
3 số hạng của cấp số nhân là: 5; - 5; 5.
Với \(q=3\):
3 số hạng của cấp số cộng là: 5; 25; 45.
3 số hạng của cấp số nhân là: 5; 15; 45.

25 tháng 5 2017

Gọi ba số đó là \(x,y,z\). Do ba số là các số hạng thứ hai, thứ 9 và thứ 44 của một cấp số cộng nên:
\(x;y=x+7d;z=x+42d\). (Với d là công sai của cấp số cộng).
Ta có: \(x+y+z=x+x+7d+x+42d=3x+49d=217\).
Mặt khác x, y, z là các số hạng liên tiếp của một cấp số nhân nên:
\(y^2=xz\)\(\Leftrightarrow\left(x+7d\right)^2=x\left(x+42d\right)\)\(\Leftrightarrow-28xd+49d^2=0\)\(\Leftrightarrow7d\left(-4x+7d\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}d=0\\-4x+7d=0\end{matrix}\right.\).
Với \(d=0\) suy ra \(x=y=z=\dfrac{217}{3}\).
Suy ra: \(n=820:\dfrac{217}{3}=\dfrac{2460}{217}\notin N\).
Với \(4+7d=0\). Ta có hệ:
\(\left\{{}\begin{matrix}4x+7d=0\\3x+49d=217\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\d=4\end{matrix}\right.\).
Vậy \(u_1=7-4=3\).
\(S_n=\dfrac{\left[2u_1+\left(n-1\right)d\right]n}{2}=\dfrac{\left[2.3+\left(n-1\right)4\right]n}{2}=820\)
 \(\Rightarrow n=20\left(tm\right)\).
 

2 tháng 1 2021

Câu 1: Gọi 3 số là a;b;c

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=6\\2b=a+c\\a^2+b^2+c^2=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a+c=4\\a^2+c^2=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}b=2\\c=4-a\\a^2+\left(4-a\right)^2=26\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\c=5\\a=-1\end{matrix}\right.\left(\text{V\text{ì} }a< c\right)\)

2 tháng 1 2021

Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)

\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)

Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt

\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)

(2) có 2 nghiệm \(t_1< t_2\)

=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)

\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)

 

NV
29 tháng 8 2020

Nhận thấy \(cosx=0\) ko phải nghiệm, chia2 vế cho \(cos^3x\)

\(4tan^3x-\frac{tanx}{cos^2x}-\frac{1}{cos^2x}=0\)

\(\Leftrightarrow4tan^3x-tanx\left(1+tan^2x\right)-\left(1+tan^2x\right)=0\)

\(\Leftrightarrow3tan^3x-tan^2x-tanx-1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x+2tanx+1\right)=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

Hai nghiệm âm lớn nhất là \(x=\left\{-\frac{3\pi}{4};-\frac{7\pi}{4}\right\}\) có tổng là \(-\frac{5\pi}{2}\)

10 tháng 9 2019

ĐS: Cấp số cộng: 5, 25, 45

Cấp số nhân: 5, 15, 45

26 tháng 10 2019

Ba số 5 + m ;   7 + 2 m ;   17 + m  theo thứ tự u 1 ,    u 2 ,    u 3  lập thành cấp số cộng nên

u 1 + u 3 = 2 u 2 ⇔ 5 + m + 17 + m = 2 7 + 2 m ⇔ 2 m + ​   22 =    14 ​   + ​   4 m    ⇔ − 2 m    = −    8   ​ ⇔ m = 4  

Chọn đáp án C.

10 tháng 11 2018

Đáp án D

14 tháng 5 2019