Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(6x^2+x-5=0\)
\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)
Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)
Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)
b, \(3x^2+4x+2=0\)
\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)
Vì \(\Delta< 0\)nên pt vô nghiệm
c, \(x^2-8x+16=0\)
\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)
Vì \(\Delta=0\)nên pt có nghiệm kép
\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)
a) \(6x^2+x-5=0\)
Ta có : \(\Delta=1+4.6.5=121>0\)
\(\Rightarrow\sqrt{\Delta}=11\)
Phương trình có hai nghiệm :
\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)
\(x_2=\frac{-1-11}{2.6}=-1\)
b) \(3x^2+4x+2=0\)
Ta có : \(\Delta=4^2-4.3.2=-8< 0\)
Vậy phương trình vô nghiệm
c) \(x^2-8x+16=0\)
Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)
Phương trình có nghiệm kép :
\(x_1=x_2=\frac{8}{2}=-4\)
b:
ĐKXĐ: x>=4
\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)
=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)
=>\(6\sqrt{x-4}=36\)
=>\(\sqrt{x-4}=6\)
=>x-4=36
=>x=40
Đã có cách giải phương trình bậc 3 bằng biệt thức rồi mà:
\(2x^3+4x^2+x-2=0\)
với a = 2; b = 4; c =1; d = -2. Là các hệ số
\(\Delta=b^2-3ac=4^2-3.2.1=10>0\)
\(k=\frac{9abc-2b^3-27a^2d}{2\sqrt{\left|\Delta\right|^2}}=\frac{4\sqrt{10}}{5}>1\) Em thay số vào nhé
Vì \(\Delta>0;\left|k\right|>1\)nên phương trình bậc 3 có nghiệm duy nhất:
=> \(x=\frac{\sqrt{\Delta}\left|k\right|}{3ak}.\left(\sqrt[3]{\left|k\right|+\sqrt{k^2-1}}+\sqrt[3]{\left|k\right|-\sqrt{k^2-1}}\right)-\frac{b}{3a}\)
\(=\frac{\sqrt{10}}{6}\left(\sqrt[3]{\frac{4\sqrt{10}}{5}+\frac{3\sqrt{15}}{5}}+\sqrt[3]{\frac{4\sqrt{10}}{5}-\frac{3\sqrt{15}}{5}}\right)-\frac{4}{6}\)
Lời giải:
ĐKXĐ: $x\leq 2$
$\sqrt{2-x}-\sqrt{4(2-x)}+\sqrt{9(2-x)}=6$
$\Leftrightarrow \sqrt{2-x}-2\sqrt{2-x}+3\sqrt{2-x}=6$
$\Leftrightarrow (1-2+3)\sqrt{2-x}=6$
$\Leftrightarrow 2\sqrt{2-x}=6$
$\Leftrightarrow \sqrt{2-x}=3$
$\Leftrightarrow 2-x=3^2=9$
$\Leftrightarrow x=2-9=-7$ (tm)
lộn
5\sqrt{x^4+8x}=4x^2+8