K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

lộn

5\sqrt{x^4+8x}=4x^2+8

a,\(6x^2+x-5=0\)

\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)

Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)

Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)

b, \(3x^2+4x+2=0\)

\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)

Vì \(\Delta< 0\)nên pt vô nghiệm 

c, \(x^2-8x+16=0\)

\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)

Vì \(\Delta=0\)nên pt có nghiệm kép 

\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)

8 tháng 4 2020

a) \(6x^2+x-5=0\)

Ta có : \(\Delta=1+4.6.5=121>0\)

\(\Rightarrow\sqrt{\Delta}=11\)

Phương trình có hai nghiệm :

\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)

\(x_2=\frac{-1-11}{2.6}=-1\)

b) \(3x^2+4x+2=0\)

Ta có : \(\Delta=4^2-4.3.2=-8< 0\)

Vậy phương trình vô nghiệm

c) \(x^2-8x+16=0\)

Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)

Phương trình có nghiệm kép :

\(x_1=x_2=\frac{8}{2}=-4\)

20 tháng 7 2017

a, x= -0.99996

b, x= -0.286334219

c, x= -0.885584228

b: 

ĐKXĐ: x>=4

\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)

=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)

=>\(6\sqrt{x-4}=36\)

=>\(\sqrt{x-4}=6\)

=>x-4=36

=>x=40

7 tháng 10 2019

Đã có cách giải phương trình bậc 3 bằng biệt thức rồi mà:

\(2x^3+4x^2+x-2=0\)

với a = 2; b = 4; c =1; d = -2. Là các hệ số

\(\Delta=b^2-3ac=4^2-3.2.1=10>0\)

\(k=\frac{9abc-2b^3-27a^2d}{2\sqrt{\left|\Delta\right|^2}}=\frac{4\sqrt{10}}{5}>1\) Em thay số vào nhé

Vì \(\Delta>0;\left|k\right|>1\)nên phương trình bậc 3 có nghiệm duy nhất: 

=> \(x=\frac{\sqrt{\Delta}\left|k\right|}{3ak}.\left(\sqrt[3]{\left|k\right|+\sqrt{k^2-1}}+\sqrt[3]{\left|k\right|-\sqrt{k^2-1}}\right)-\frac{b}{3a}\)

\(=\frac{\sqrt{10}}{6}\left(\sqrt[3]{\frac{4\sqrt{10}}{5}+\frac{3\sqrt{15}}{5}}+\sqrt[3]{\frac{4\sqrt{10}}{5}-\frac{3\sqrt{15}}{5}}\right)-\frac{4}{6}\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
ĐKXĐ: $x\leq 2$

$\sqrt{2-x}-\sqrt{4(2-x)}+\sqrt{9(2-x)}=6$

$\Leftrightarrow \sqrt{2-x}-2\sqrt{2-x}+3\sqrt{2-x}=6$

$\Leftrightarrow (1-2+3)\sqrt{2-x}=6$

$\Leftrightarrow 2\sqrt{2-x}=6$

$\Leftrightarrow \sqrt{2-x}=3$

$\Leftrightarrow 2-x=3^2=9$

$\Leftrightarrow x=2-9=-7$ (tm)