K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

a)\(x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+2\right)\left(x+1\right)\)

13 tháng 8 2019

k)\(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x+1^2\)

\(=\left(2x+1\right)^2\)

5 tháng 7 2017

Cứ thay vào rùi thính thui

5 tháng 7 2017

Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:

c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

riêng câu này ta thay x = 9 vào luôn, vậy ta có:

\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)

\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)

\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)

\(=-9+10\)

\(=1\)

30 tháng 10 2016

\(B=7x^2-7xy-5x+5y\)

\(=7x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(7x-5\right)\)

\(E=x^2+7x+12\)

\(=x^2+3x+4x+12\)

\(=x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

\(F=x^2-9x+18\)

\(=x^2-3x-6x+18\)

\(=x\left(x-3\right)-6\left(x-3\right)\)

\(=\left(x-3\right)\left(x-6\right)\)

\(H=8x^2-2x-1\)

\(=8x^2-4x+2x-1\)

\(=4x\left(2x-1\right)+\left(2x-1\right)\)

\(=\left(2x-1\right)\left(4x+1\right)\)

 

5 tháng 3 2019

\(j,3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy...............................

5 tháng 3 2019

\(m,3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-2\end{matrix}\right.\)

15 tháng 8 2017

help me ,pleas?

a) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2\right\}\)

b) Ta có: \(-x^2+5x-6=0\)

\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)

\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)

\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)

\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

c) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

⇔(4x2-10x)-(2x-5)=0

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

d) Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)

e) Ta có: \(x^3+2x^2-x-2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;1;-1\right\}\)

g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)

\(\Leftrightarrow-24x-8=0\)

\(\Leftrightarrow-8\left(3x+1\right)=0\)

⇔3x+1=0

\(\Leftrightarrow3x=-1\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

22 tháng 1 2020

h) \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy S = {2; 1; \(\frac{1}{2}\)}

i) \(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)

Vậy S = {1;-2}

12 tháng 7 2019

a,\(xy+3x-7y-21\)

\(=x\left(y+3\right)-7\left(y+3\right)\)

\(=\left(y+3\right)\left(x-7\right)\)

12 tháng 7 2019

\(b,2xy-15-6x+5y\)

\(=\left(2xy-6x\right)+\left(-15+5y\right)\)

\(=2x\left(y-3\right)-5\left(3-y\right)\)

\(=2x\left(y-3\right)+5\left(y-3\right)\)

\(=\left(y-3\right)\left(2x+5\right)\)

27 tháng 9 2018

a) x2 + 5x + 4

= x2 + x + 4x + 4 

= x (x+1) + 4 (x+1)

= (x+1) ( x+4)

c) x2 - 7x + 12

= x2 - 3x - 4x +12

= x(x-3) - 4(x-3)

= (x-3)( x-4)

29 tháng 7 2019

m) \(5x^2+6x+1\)

\(=5x^2+5x+x+1\)

\(=5x\left(x+1\right)+\left(x+1\right)\)

\(=\left(5x+1\right)\left(x+1\right)\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

a)

\(3x^2+12x-66=0\)

\(\Leftrightarrow x^2+4x-22=0\)

\(\Leftrightarrow x^2+4x+4=26\Leftrightarrow (x+2)^2=26\)

\(\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\)

b)

\(9x^2-30x+225=0\)

\(\Leftrightarrow (3x)^2-2.3x.5+25+200=0\)

\(\Leftrightarrow (3x-5)^2=-200< 0\) (vô lý nên pt vô nghiệm)

c)

\(x^2+3x-10=0\)

\(\Leftrightarrow x^2-2x+5x-10=0\)

\(\Leftrightarrow x(x-2)+5(x-2)=0\Leftrightarrow (x+5)(x-2)=0\)

\(\Rightarrow x=-5\) hoặc $x=2$

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

d)

$3x^2-7x+1=0$

$\Leftrightarrow 3(x^2-\frac{7}{3}x)+1=0$

$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})=\frac{37}{12}$

$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{37}{12}$
$\Leftrightarrow (x-\frac{7}{6})^2=\frac{37}{36}$

$\Rightarrow x-\frac{7}{6}=\frac{\pm \sqrt{37}}{6}$

$\Rightarrow x=\frac{7\pm \sqrt{37}}{6}$

e)

$3x^2+7x+2=0$

$\Leftrightarrow 3(x^2+\frac{7}{3}x+\frac{7^2}{6^2})=\frac{25}{12}$

$\Leftrightarrow 3(x+\frac{7}{6})^2=\frac{25}{12}$

$\Leftrightarrow (x+\frac{7}{6})^2=\frac{25}{36}$

$\Rightarrow x+\frac{7}{6}=\pm \frac{5}{6}$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$