K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

ko biết

20 tháng 10 2021

\(\tan a=\frac{22,1}{S}\)

\(\cot a=\frac{s}{22,1}\)

b , Khi \(a=1^015'=\frac{22,1}{s}\Rightarrow S=\frac{22,1}{\tan1^015'}=1012,83\left(m\right)\)

10 tháng 11 2021

Gọi số ngày hoàn thành công việc nếu làm riêng của người thứ nhất là x, người thứ 2 là y(ngày),(x,y>0)

1 ngày người thứ nhất làm được:\(\frac{1}{x}\)

1 ngày người thứ hai làm được:\(\frac{1}{y}\)

=> 1 ngày cả người làm được:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)(1)

3 ngày người thứ nhất làm được:\(\frac{3}{x}\)

Vì sau 3 ngày, người thứ 2 làm nốt 15 ngày nên: Số ngày người thứ 2 làm là 15+3=18

18 ngày người thứ hai làm được \(\frac{18}{x}\)

Do đó, ta được:\(\frac{3}{x}+\frac{18}{y}=1\)(2)

Từ (1) và (2) , ta có hệ: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{3}{x}+\frac{18}{y}=1\end{cases}}\)

Đặt \(\frac{1}{x}\)= a, \(\frac{1}{y}\)= b, ta được

\(\hept{\begin{cases}a+b=\frac{1}{12}\\3a+18b=1\end{cases}}\)<=>\(\hept{\begin{cases}a=\frac{1}{30}\\b=\frac{1}{20}\end{cases}}\)<=>\(\hept{\begin{cases}x=30\\y=20\end{cases}}\). Vậy......

10 tháng 11 2021

Chỗ 18 ngày của ngườ thứ 2 là \(\frac{18}{y}\)nha

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

NV
7 tháng 1 2022

22.

ĐKXĐ: \(y\ne1\)

\(\left\{{}\begin{matrix}x^2-\dfrac{1}{y-1}=2\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+\dfrac{2}{1-y}=4\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

Trừ pt dưới cho trên:

\(\Rightarrow\dfrac{1}{1-y}=-2\)

\(\Rightarrow1-y=-\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\)

Thế vào \(x^2-\dfrac{1}{y-1}=2\)

\(\Rightarrow x^2=4\Rightarrow x=\pm2\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right);\left(-2;\dfrac{3}{2}\right)\)

NV
7 tháng 1 2022

b.

ĐKXĐ: \(x\ne-\dfrac{1}{2}\)

\(Hệ\Leftrightarrow\left\{{}\begin{matrix}2y^2-\dfrac{10}{2x+1}=8\\2y^2-\dfrac{11}{2x+1}=7\end{matrix}\right.\)

Trừ pt trên cho dưới:

\(\Rightarrow\dfrac{1}{2x+1}=1\)

\(\Rightarrow2x+1=1\)

\(\Rightarrow x=0\)

Thế vào \(y^2-\dfrac{5}{2x+1}=4\)

\(\Rightarrow y^2=9\Rightarrow y=\pm3\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(0;3\right);\left(0;-3\right)\)

2 tháng 9 2021

Ta có : \(\frac{AB}{AC}=\frac{1}{4}\Rightarrow AB=\frac{1}{4}AC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{64}=\frac{1}{\left(\frac{1}{4}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC=8\sqrt{17}\)cm

\(\Rightarrow AB=\frac{8\sqrt{17}}{4}=2\sqrt{17}\)cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=34\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=2\)cm 

-> HC = BC - HB = 32 cm 

NM
5 tháng 9 2021

đây là bài lớp 10 chứ nhỉ

ta có \(AC=20\times2=40\text{ hải lí}\)\(AB=15\times2=30\text{ hải lí}\)

áp dụng định lý cosin ta có :

\(BC=\sqrt{AB^2+AC^2-2AB.AC\text{c}osA}=\sqrt{40^2+30^2-2\times30\times40\times cos60^o}\simeq36.06\text{ hải lí}\)