Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 + b3 + c3 - 3abc = (a + b)3 + c3 - 3abc - 3ab(a + b)
= (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c)
= (a + b + c)(a2 + b2 + c2 - ab - ac - bc)
b, \(a+b+2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\) ( Vì a, b >= 0 )
c, \(a+b-2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}-2\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)( Vì a, b >= 0 )
\(\text{Δ}=2^2-4\cdot2\cdot\dfrac{5}{4}=4-8\cdot\dfrac{5}{4}=4-10=-6< 0\)
Do đó: đa thức P(x) vô nghiệm
P(x)=x(x+3)(x+1)(x+2)+1
P(x)=(x2+3x)(x2+3x+2)+1
Đặt x2+3x=a
Ta có:
P(x)=a(a+2)+1
P(x)=a2+2a+1
P(x)=(a+1)2
Vậy P(x)=(x2+3x)2
a) Phân tích được x3(x2 - 7)2 – 36x = x(x + 1 )( x - 1 )(x - 3)(x + 2)(x - 2)( x + 3)
b) Theo phần a ta có :
A = n3(n2 - 7)2 - 36n = n(n + 1)(n - 1) (n - 3)(n + 2)(n - 2)(n + 3)
Đây là tích của 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp có:
- Một bội của 2 nên A chia hết cho 2.
- Một bội của 3 nên A chia hết cho 3.
- Một bội của 5 nên A chia hết cho 5.
- Một bội của 7 nên A chia hết cho 7.
Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau nên: A chia hết cho (2; 3; 5;7)
Hay A chia hết cho 210.
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)