Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
a, Ta có: 3xy - 5 = x2 + 2y
=> 3xy - x2 - 2y = 5
=> y.( 3x - 2 ) = 5 + x.x
=> y = \(\frac{5+x^2}{3x-2}\)
=> \(x^2+5⋮3x-2\)( vì y là số nguyên )
=> \(3x^2+15⋮3x-2\)
\(\Rightarrow x\left(3x-2\right)+15+2x⋮3x-2\)
\(\Rightarrow2x+15⋮3x+2\)
\(\Rightarrow6x+45⋮3x+2\)
\(\Rightarrow2.\left(3x+2\right)+41⋮3x+2\)
\(\Rightarrow41⋮3x+2\)
\(\Rightarrow3x+2\in\left\{-41;-1;1;41\right\}\)
\(\Rightarrow3x\in\left\{-43;-3;-1;39\right\}\)
VÌ 3x chia hết cho 3
\(\Rightarrow3x\in\left\{-3;39\right\}\)
\(\Rightarrow x\in\left\{-1;13\right\}\)
+) với x = -1 => y = -6/5 ( loại )
+) với x = 13 => y = 174/37 ( loại )
Vậy không tìm được ( x ; y ) thỏa mãn bài
b,
Xét \(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Vậy: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
a) Với x= -1
thì \(A\left(-1\right)=\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+....+\left(-1\right)^{100}\)
\(=-1+1-1+1....-1+1=0\)
=> x=-1 là nghiệm của A
b)
\(B=x+x^2+...+x^{100}\\ =>B.x=x^2+x^3+...+x^{101}\\ \Rightarrow B\left(x-1\right)=x^{101}-x\\ \Rightarrow B=\dfrac{x^{101}-x}{x-1}=\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{\dfrac{1}{2}-1}\)
a,Đặt: N=x+x^2+x^3+.....+x^100
N.x=x^2+x^3+......+x^101
N.x-N=(x^2+x^3+......+x^101)-(x+x^2+....+x^100)
N.(x-1)=x^2+x^3+....+x^101-x-x^2-...-x^100
N.(x-1)=x^101-x
N=x^101-x/x-1 (1)
cho: N=x^101-x/x-1=0
x^101-x=0
x.(x^101-1)=0
x=0 hoặc x^101-1=0
x=0 hoặc x=+-1
b,thay x=1/2 vào biểu thức có:
N= tự lắp vào (1) hộ mình
N=1
k cho minh nha!
\(3xy-5=x^2+2y\Leftrightarrow xy-x^2+2xy-2y=5\Leftrightarrow x\left(y-x\right)+2y\left(x-y\right)=5\Leftrightarrow\left(2y-x\right)\left(x-y\right)=5\)
\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=3^n\left(9+1\right)-2\left(2^{n+1}+2^{n-1}\right)\left(n\in Z^+\right)=3^n.10-2\left(4.2^{n-1}+2^{n-1}\right)=3^n.10-10.2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)
b) 3n+2-2n+2+3n-2n = (3n+2+3n)+(-2n+2-2n) = (3n.32+3n)+[-2n.(-2)2-2n
= 3n (9+1) -2n(4+1)
=3n . 10 - 2n.5
= 3n.10 - 2n-1.10
= 10 ( 3n-2n-1) \(⋮\) 10
Vậy ...