Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT <=> (3x - 1)(6x - 1)(4x - 1)(5x - 1) = 120
. <=> (18x² - 9x + 1)(20x² - 9x + 1) = 120
Đặt a = 19x² - 9x + 1 (Đk a > 0) ta có PT: (a - 1)(a + 1) = 120
<=> a² - 1 = 120
<=> a² = 121
<=> a = 11 (Vì a >0)
Với a = 11 ta có PT: 19x² - 9x - 10 = 0
<=> (10x + 19)(x - 1) = 0
<=> x = 1 (Vì x nguyên)
KL: x = 1
mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên
a)1
b)1
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)
\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)
b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)
\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)
c, thiếu đề
d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)
\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)
a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)
\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)
b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)
\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)
c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)
\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)
d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
\(\left(3x-1\right)\cdot\left(4x-1\right)\cdot\left(5x-1\right)-120=0\)
\(\Rightarrow\left(3x-1\right)\cdot\left(4x-1\right)\cdot\left(5x-1\right)=120\)
\(\Rightarrow3x-1=0\) hoặc \(4x-1=0\)
hoặc \(5x-1=0\\\)
Do đó: 3x=1 hoặc 4x=1hoặc5x=1
Vì vậy, \(x=\dfrac{1}{3}\)hoặc \(x=\dfrac{1}{4}\)hoặc \(x=\dfrac{1}{5}\)