Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(M=(100^-99^2)+(98^2-97^2)+...+(2^2-1^2)\)
\(=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)\)
\(=100+99+98+97+...+2+1\)
\(=\frac{100(100+1)}{2}=5050\)
b) \(N=(20^2-19^2)+(18^2-17^2)+...+(2^2-1^2)\)
\(=(20-19)(20+19)+(18-17)(18+17)+...+(2-1)(2+1)\)
\(=20+19+18+17+...+2+1=\frac{20(20+1)}{2}=210\)
c) \(P=(-1)^n(-1)^{2n+1}(-1)^{n+1}\)
\(P=(-1)^{n+2n+1+n+1}=(-1)^{4n+2}=(-1)^{2(2n+1)}=1\)
\(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(M=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(M=100+99+98+97+...+2+1\)
\(M=5050\)
\(N=\left(20^2+18^2+...+2^2\right)-\left(19^2+17^2+...+1^2\right)\)
\(N=20^2-19^2+18^2-17^2+...+2^2-1^2\)
\(N=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)
\(N=20+19+18+17+...+2+1\)
\(N=210\)
c) P =(-1)n *(-1)2n+1 *(-1)n+1
- Nếu n chẵn
=> P =(-1)n = 1;
(-1)2n+1 có 2n+1 lẻ =>(-1)2n+1 =-1
(-1)n+1 có n+1 lẻ =>(-1)n+1=-1
=>1*(-1)*(-1)=1
- Nếu n lẻ
=> P =(-1)n = -1;
(-1)2n+1 có 2n+1 lẻ =>(-1)2n+1 =-1
(-1)n+1 có n+1 chẵn =>(-1)n+1=1
=>(-1)*(-1)*1=1
Xét 2 trường hợp ta đều thấy có tích =1
=>P=1
c) P =(-1)n *(-1)2n+1 *(-1)n+1
- Nếu n chẵn
=> P =(-1)n = 1;
(-1)2n+1 có 2n+1 lẻ =>(-1)2n+1 =-1
(-1)n+1 có n+1 lẻ =>(-1)n+1=-1
=>1*(-1)*(-1)=1
- Nếu n lẻ
=> P =(-1)n = -1;
(-1)2n+1 có 2n+1 lẻ =>(-1)2n+1 =-1
(-1)n+1 có n+1 chẵn =>(-1)n+1=1
=>(-1)*(-1)*1=1
Xét 2 trường hợp ta đều thấy có tích =1
=>P=1
A = 2100- 299 + 298 - 297 + ... + 22 - 2
=> 2A = 2101 - 2100 + 299 - 298 + ... + 23 - 22
Khi đó 2A + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)
=> 3A = 2101 - 2
=> \(A=\frac{2^{201}-2}{3}\)
b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1
=> 3B = 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
Khi đó 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)
=> 4B = 3101 + 1
=> B = \(\frac{3^{101}+1}{4}\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)
<=> \(3A=2^{101}-2\)
=> \(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)
<=> \(4A=3^{101}+1\)
=> \(A=\frac{3^{101}+1}{4}\)
\(\Rightarrow N=20^2-19^2+18^2-17^2+...+2^2-1^2\)
\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=20+19+18+17+...+2+1\)\(=\left(20+1\right)+\left(19+2\right)+...+\left(11+10\right)\)(có 10 cặp)
=21x10=210