Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Nếu n là số nguyên chẵn
=> n + 2020\(⋮2\)
=> \(P=\left(n+2019\right)\left(n+2020\right)\)\(⋮2\)
+) Nếu n là số nguyên lẻ
=> n + 2019 \(⋮2\)
=> \(P=\left(n+2019\right)\left(n+2020\right)\)\(⋮2\)
Vậy với mọi số nguyên n thì biểu thức P luôn chia hết cho 2.
\(8^{12}+2^{33}=\left(2^3\right)^{12}+2^{33}=2^{36}+2^{33}=2^{33}\left(2^3+1\right)=9.2^{33}\) chia hết cho 9
Ta có: n3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nn3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nVì n là số nguyên dương
=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)
Mà 6n chia hết cho 6
=> n(n-1)(n+1) +6n chia hết cho 6
=> n3+5nn3+5n chia hết cho 6 (đpcm)
Ta có n3 + 5n = n3 - n + 6n
= n(n2 - 1) + 6n
= n(n2 - n + n - 1) + 6n
= n[n(n - 1) + (n - 1)] + 6n
= n(n - 1)(n + 1) + 6n = (n - 1)n(n + 1) + 6n
Nhận thấy (n - 1)n(n + 1) \(⋮\)6 (tích 3 số nguyên liên tiếp)
Lại có 6n \(⋮\)6
=> (n - 1)n(n + 1) + 6n \(⋮\)6
=> n3 + 5n \(⋮\)6 \(\forall n\inℤ^+\)
p xem lại đề đc k
thử với n=1 ta được:
VT=3^3-2^3+3+2=27-8+3+2=24 không chia hết cho 10
a) Ta có \(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\forall n\inℕ^∗\)
https://olm.vn/hoi-dap/detail/5937426943.html
Ko giống mấy nhưng mình thấy khá tương tự
Nên bạn tham khảo nhé!