Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số x , y thỏa mãn x + y \(\ne\)0
Chứng minh : \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
thằng ngu lê anh tú ko biết gì thì im vào
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)\(\Rightarrow x^2+y^2=S^2-2P\)
Ta cần chứng minh \(S^2-2P+\left(\frac{P+1}{S}\right)^2\ge2\)
\(\Leftrightarrow S^2-2\left(P+1\right)+\left(\frac{P+1}{S}\right)^2\ge0\)
\(\Leftrightarrow S^2-\frac{2S\left(P+1\right)}{S}+\left(\frac{P+1}{S}\right)^2\ge0\)
\(\Leftrightarrow\left(S-\frac{P+1}{S}\right)^2\ge0\) *luôn đúng*
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>
x + y = 1
<=> (x + y)2 = 12
<=> x2 + y2 + 2xy = 1
<=> x2 + y2 = 1 - 2xy
Ta có:
\(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
= \(\dfrac{x\left(x^3-1\right)}{\left(y^3-1\right)\left(x^3-1\right)}-\dfrac{y\left(y^3-1\right)}{\left(y^3-1\right)\left(x^3-1\right)}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
= \(\dfrac{x^4-x-y^4+y}{x^3y^3-y^3-x^3+1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2+y^2-xy\right)+1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\dfrac{\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(1-2xy-xy\right)+1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\dfrac{\left(x-y\right)\left(1-2xy-1\right)}{x^3y^3+3xy}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\dfrac{-2xy\left(x-y\right)}{xy\left(x^2y^2+3\right)}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
\(=-\dfrac{2\left(x-y\right)}{x^2y^2+3}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)
= 0 (đpcm)
Theo mình nó còn có x,y > 0 nữa nha !
Ta có:
\(x^2+y^2+\left(\dfrac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\)
Áp dụng BĐT Cosi ta có:
\(\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2\ge2\sqrt{\left(x+y\right)^2\left(\dfrac{1+xy}{x+y}\right)^2}=2\left(1+xy\right)\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\ge2\left(1+xy\right)-2xy\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\ge2+2xy-2xy=2\)
\(\Rightarrow\)đpcm
Lời giải:
Đặt \(\left\{\begin{matrix} (x+y)^2=a\neq 0\\ xy=b\end{matrix}\right.\)
Dùng cách biến đổi tương đương.
Ta có: \(A=x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=(x+y)^2-2xy+\frac{(xy+1)^2}{(x+y)^2}\)
\(A=a-2b+\frac{(b+1)^2}{a}\)
\(A\geq 2\Leftrightarrow a-2b+\frac{(b+1)^2}{a}\geq 2\)
\(\Leftrightarrow a^2-2ab+(b+1)^2\geq 2a\)
\(\Leftrightarrow a^2+b^2+1-2ab+2b-2a\geq 0\)
\(\Leftrightarrow (-a+b+1)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(-a+b+1=0\Leftrightarrow x^2+y^2+xy=1\)
cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
\(x^2+y^2+\left(\dfrac{1+xy}{x+y}\right)^2\ge2\)
\(\Leftrightarrow\)(x+y)2+\(\left(\dfrac{1+xy}{x+y}\right)^2\)\(\ge\)2
\(\Leftrightarrow\)\(\dfrac{2\left(x+y\right)^2+\left(1+xy\right)^2}{\left(x+y\right)^2}\ge2 \)
\(\Leftrightarrow\)2(x+y)2+(1+xy)2\(\ge2\left(x+y\right)^2\)
Thanks .