Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
d) Vì tam giác DHB=tam giác EHC(cmb)=>HD=HE(2 cạnh tương ứng)
Mà H thuộc EF và HD=HF(theo đề bài)
=>HE=HD=HF=DF/2
Tam giác DEF có đường trung tuyến EH bằng 1/2 đáy DF tương ứng=>Tam giác DEF vuông tại E.
a, xét tam giác AHB và tg AHC có : ^AHC = ^AHB = 90
AB = AC do tg ABC cân tại A (gt)
^ABC = ^ACB do tg ABC ...
=> tg AHB = tg AHC (ch-gn)
b, tg ABC cân tại A (Gt) mà có AH là đường cao (1)
=> AH đồng thời là đường trung tuyến
=> H là trung điểm của BC
=> BH = 1/2BC = 6 cm
tg AHB vuông tại H (gt) => AB^2 = AH^2 + HB^2 (ĐL pytago)
AB = 10 (gt)
=> AH = 8 do AH > 0
c, (1) => AH đồng thời là pg của ^BAC (đl)
=> ^CAH = ^BAH (đn)
có HE // AC (gt) ; ^CAH slt ^AHE => ^CAH = ^AHE (đl)
=> ^BAH = ^AHE
=> tg AHE cân tại E (dh)
a/ Xét tam giác ABH vuông tại H và tam giác AHC vuông tại H
. AB = AC ( tam giác ABC cân tại A )
. AH là cạnh chung
Suy ra tam giác ABH = tam giác AHC ( cạnh huyền - cạnh góc vuông )
Mà H thuộc BC
Suy ra H là trung điểm của BC
Suy ra BH = BC ( 2 cạnh tương ứng )
b/ Xét tam giác AHC vuông tại H có
AC2 = AH2 + HC2 ( định lý pytago )
132 = 122 + HC2
169= 144 + HC2
HC2 = 169 -144
HC2 = 25
HC =\(\sqrt{25}\)
HC = 5 cm
=> Bc =HC .2 =10cm
Vậy BC = 10cm
c/ Xét tam giác AEM vuông tại M và tam giác EMB vuông tại M
. EM là cạnh chung
.AM = MB ( M là trung điểm )
=> Tam giác AEM = tam giác EMB ( cạnh huyền - cạnh góc vuông )
=> A1 = B1 ( 2 góc ở đáy )
=> AE =BE ( 2 cạnh tương ứng )
=> Tam giác AEB cân tại E
d/ Ta có:
. A1 = A2 ( tam giác ABH = tam giác ACH )
. B1 = A2 ( tam giác ABE cân )
=> B1 = A1
Xét tam giác BDE và tam giác AFE có
. BD = AF ( gt )
. BE = AE ( tam giác ABE cân tại E )
.B1 = A1 ( cmt )
=> Tam giác DEB = tam giác AFE( c.g.c )
=> ED = EF ( 2 cạnh tương ứng )
Tam giác DEF có
DE + EF > DF ( bất đẳng thức tam giác)
Mà DE = EF ( cmt )
=> EF + EF > DF
=> 2EF > DF
=> EF > \(\frac{DF}{2}\)