Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ...
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
AB = AC ( giả thiết )
AM: Cạnh chung
AM = BM ( Vì M là trung điểm của BC )
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\) (đpcm)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng)
Ma lại có: \(\widehat{AMB}+\widehat{AMC}=180\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180}{2}=90^o\)
=> AM vuông góc với BC
b) Vì \(CE\perp AB\) và \(AM\perp BC\)
=> EC // AM ( Từ vuông góc đến song song )
c) Vì tam giác ABC vuông cân
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^o\)
\(\Rightarrow\widehat{ACE}=90^o-45^0=45^0\)
Xét \(\Delta ACE\) và \(\Delta ACE\) , có:
\(\widehat{ACE}=\widehat{ACB}=45^0\)
\(\widehat{CAE}=\widehat{BAC}=90^0\)
AC: Cạnh chung
=> \(\Delta ACE=\Delta ACB\left(g.c.g\right)\)
=> CE = CB (hai cạnh tương ứng)
a, xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM do M là trung điểm của BC
AM là cạnh chung
=> tam giác ABM =tam giác ACM c.c.c
=> góc B = góc C do là 2 góc tương ứng
vì tam giác ABM =tam giác ACM nên góc BMA= góc AMC (2 góc tương ứng
mà ^BMA + ^AMC =180 độ do là 2 góc kề bù
mà BMA = AMC nên BMA =AMC =180 độ :2 =90 độ
=> AM vuông góc với BC
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
Bạn tự vẽ hình nhé
Bài 1 BL
a) do tam giác ABC có AB = AC
=> tam giác ABC là tam giác cân
=> góc ABM = góc ACM
Xét 2 tam giác ABM và tam giác ACM
AB=AC
góc ABM = góc ACM
BM = MC ( M là trung điểm của BC)
=> tam giác ABM = tam giác ACM
b) Do tam giác ABM = tam giác ACM
=> góc AMB = góc AMC
mà AMB + góc AMC = 180 độ
=> góc AMB = góc AMC = 90 độ
hay AM vuông góc BC
Bài 2 BL
do góc A là góc vuông
=> tam giác ACD là tam giác vuông
=> tam giác ABE là tam giác vuông
Xét 2 tam giác ACD và ABE
AB = AD
AE=AD
=> 2 tam giác ACD và ABE bằng nhau
=> góc OEC = góc ODB
=>góc EBA=gócDCA
Ta có : AB+BD=AD
AC+CE=AE
mà AB = AC
AD=AE
=>BD=CE
Ta có: góc DCA+góc OCE=180 độ
góc EBA + góc OBD = 180 độ
mà góc DCA=góc EBA
=> góc OBD = góc OCE
Xét 2 tam giác BOD và COE:
góc ODB= góc OEC
BD = CE
góc OBD = góc OCE
=> tam giác BOD = tam giác COE
a) Xét tg ABM và ACM có :
AB=AC(gt)
AM-cạnh chung
MB=MB(gt)
=> Tg ABM=ACM(c.c.c)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
=> AM là tia pg góc A (đccm)
b) Xét tg BNC và DNC có :
BC=CD(gt)
\(\widehat{DCN}=\widehat{BCN}\left(gt\right)\)
NC-cạnh chung
=> Tg BNC=DNC(c.g.c)
\(\Rightarrow\widehat{CND}=\widehat{CNB}=\frac{\widehat{DNB}}{2}=\frac{180^o}{2}=90^o\)
\(\Rightarrow CN\perp BD\left(đccm\right)\)
c) Có : AB=AC(gt)
=> Tg ABC cân tịa A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(1)
- Do tg BNC=DNC(cmt)
\(\widehat{ABC}=\widehat{BDC}\)(2)
- Từ (1) và (2)\(\Rightarrow\widehat{BDC}=\widehat{ACB}\)
- Có : \(\widehat{ADC}+\widehat{BDC}=180^o\)
\(\widehat{ACB}+\widehat{BCE}=180^o\)
Mà : \(\widehat{BDC}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{ADC}\left(đccm\right)\)
d) Xét tg ACD và EBC có :
BC=CD(gt)
DA=CE(gt)
\(\widehat{BCE}=\widehat{ADC}\left(cmt\right)\)
=> Tg ACD=EBC(c.g.c)
=> AC=BE
Mà AC=AB(gt)
=> BE=AB (đccm)
#H
A B C D M
Hình vẽ đó ,từ làm cho quen đi bn.
Lưu ý:Hình vẽ chỉ mang tính tượng trưng,không chắc là đúng số đo