Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Gọi d là ước chung của tử và mẫu
=> 12n + 1 chia hết cho d 60n + 5 chia hết cho d
=>
30n +2 chia hết cho d 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1 => ( đpcm )
Câu a) làm rồi mình làm câu b) nhé
\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)
b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a)A=1+1/22+1/32+....+1/1002
<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2
b)B=1/22+1/32+...+1/20122
<1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012
1/2-1/2013=2011/4026<2011/2012<1
a, \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
Mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2\Rightarrow A< 2\left(đpcm\right)\)
b, B = 2 + 22 + 23 +...+ 230
= (2+22+23+24+25+26)+...+(225+226+227+228+229+230)
= 2(1+2+22+23+24+25)+...+225(1+2+22+23+24+25)
= 2.63+...+225.63
= 63(2+...+225)
Vì 63 chia hết cho 21 nên 63(2+...+225) chia hết cho 21
Vậy B chia hết cho 21
ta có :
\(\frac{1}{2.3}>\frac{1}{3^2}>\frac{1}{4.3};\frac{1}{3.4}>\frac{1}{4^2}>\frac{1}{4.5}....\)
Tương tự ta sẽ có :
\(\frac{1}{2^2}+\frac{1}{2.3}+.+\frac{1}{99.100}>A>\frac{1}{2^2}+\frac{1}{3.4}+..+\frac{1}{100.101}\)
hay ta có :
\(\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}>A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{100}-\frac{1}{101}\)
hay \(\frac{1}{4}+\frac{1}{2}-\frac{1}{100}>A>\frac{1}{4}+\frac{1}{3}-\frac{1}{101}\)
hay ta có : \(\frac{1}{4}+\frac{1}{2}>A>\frac{1}{4}+\frac{1}{3}-\frac{31}{300}\Leftrightarrow\frac{3}{4}>A>\frac{12}{25}\)
vậy ta có điều phải chứng minh
Sorry bạn nha , mình bấm nhầm nút
\(A=\frac{5}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A< \frac{5}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{100}< \frac{5}{4}+\frac{1}{2}=\frac{7}{4}\)
\(\Rightarrow\)\(A< \frac{7}{4}\)
Vậy , \(\frac{5}{4}< A< \frac{7}{4}\left(ĐPCM\right)\)
BÀI KHÓ CỦA TRƯỜNG MÌNH ĐÓ THI HK2
GIÚP MÌNH NHÉ!!!!!!THANKS!!!!!!