Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
................
\(\frac{1}{19^2}<\frac{1}{18.19}\)
Cộng vế với vế ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{19^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{18.19}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{18}-\frac{1}{19}\)\(=1-\frac{1}{19}=\frac{18}{19}>\frac{18}{40}=\frac{9}{20}\)
Kết luận: ....>.....
\(A=2+2^2+...+2^{2002}\)
\(2A=2^2+2^3+...+2^{2003}\)
\(2A-A=2^2+2^3+...+2^{2003}-2-2^2-...-2^{2002}\)
\(A=2^{2003}-2\)
Mà \(2^{2003}-2< 2^{2003}\Rightarrow A< B\)
Hình như đề câu 1 sai.
1,2 dễ ko làm
3,
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )
S = 210 - 1
Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1
Vậy S < 5 . 28
P = 1 + 3 + 32 + 33 + ... + 320
3P = 3 + 32 + 33 + 34 + ... + 321
3P - P = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 3 + 32 + 33 + ... + 320 )
2P = 321 - 1
P = ( 321 - 1 ) : 2 < 321
Vậy P < 321
Mình giải thử xem đúng ko nha:
M=1/22+1/32+1/42+....+1/202
=1/2.2+1/3.3+1/4.4+.....+1/20.20
mà M<1/1.2+1/2.3+1/3.4+....+1/19.20
M<1/1-1/2+1/2-1/3+...+1/19-1/20
M<1-1/20
M<19/20<1
=> M<1
rb29 657