K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

hình bạn tự vẽ nha vì muộn rùi!!!!

a, Ta có M là trung điểm của AB (tự chứng minh)

N là trung điểm của AC (tự chứng minh)

Từ trên => MN là đường trung bình của \(\Delta ABC\)(dhnb đường trung bình)

=> \(MN=\frac{1}{2}BC\)(t/c đường trung bình)

=> \(MN=\frac{1}{2}.10=5\left(cm\right)\)

b,Xét \(\Delta AMN\)và \(\Delta ABC\)

Có \(\widehat{A}\)chung

\(\frac{AM}{AB}=\frac{AN}{AC}\left(=\frac{1}{2}\right)\)

Từ trên => 2 tam giác đồng dạng theo TH (c.g.c)

20 tháng 4 2019

cảm ơn

20 tháng 3 2017

aaaaaa

20 tháng 3 2017

aaaaaa

BC=BD+CD

=15+20

=35(cm)

Xét ΔABC có AD là phân giác

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

=>AB=3k; AC=4k

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)

=>\(25k^2=35^2\)

=>\(k^2=49\)

=>k=7

=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Lời giải:

Theo tính chất đường phân giác: 

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

$\Rightarrow AB=\frac{3}{4}AC$
Theo định lý Pitago:

$AB^2+AC^2=BC^2=(BD+DC)^2=(15+20)^2=35^2$
$\Rightarrow (\frac{3}{4}AC)^2+AC^2=35^2$
$\Rightarrow AC^2.\frac{25}{16}=35^2$
$\Rightarrow AC^2=784\Rightarrow AC=28$ (cm)

$AB=\frac{3}{4}AC=\frac{3}{4}.28=21$ (cm)

4 tháng 9 2014

A B C F D E G

      Theo giả thiết ta có AD=DF=FB.

      Có nghĩa là: D là trung điểm của AF, F là trung điểm của  DB

      Xét tam giác AFG, ta có:

  •       D là trung điểm của AF
  •       Mà DE // FG

\(\Rightarrow\)DE là đường trung bình, Vậy E là trung điểm

     Xét hình thangDECB, ta có:

  •      F là trung điểm của DB
  •      FG // BC

     => G là trung điểm

     => GE =GC

     Mà EG=GA (cmt)

     => GE=GC=GA

     Tam giác AFG có DE là đường trung bình

     =>DE=\(\frac{1}{2}\)FG

     Ta có FG là đường trung bình cua hình thang DECB

     =>FG = \(\frac{DE+BC}{2}\)

     Ta phải chứng minh DE+FG=BC

     \(\frac{1}{2}\)FG + \(\frac{DE+BC}{2}\) = BC

     \(\frac{1}{2}\)(FG+DE+BC)=BC

      FG+DE+BC= 2BC

      FG+DE = 2BC - BC

      FG+DE = BC

      b) ta có  FG= \(\frac{DE+BC}{2}\)

      2FG= \(\frac{1}{2}\)FG +9

      2FG - \(\frac{1}{2}\)FG = 9

      \(\frac{3}{2}\)FG =9

      => FG=9:\(\frac{3}{2}\)

       FG=6cm

       mà FG=2DE

       =>DE= \(\frac{FG}{2}\)=\(\frac{6}{2}\)=3cm