Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: v = 2 m/s, F = 120 N
Thay vào công thức F = = av2ta được a . 22 = 120
Suy ra: a = 120 : 22= 120 : 4 = 30 (N/m2)
b) Với a = 30 N/m2 . Ta được F = 30v2nên khi vận tốc v = 10 m/s2 thì F = 30 . 102 = 3000N.
Khi vận tốc v = 20m/s2 thì F = 30 . 400 = 12000N
c) Gió bão có vận tốc 90 km/h hay 90000m/3600s = 25m/s. Mà theo câu b), cánh buồm chỉ chịu sức gió 20 m/s. Vậy cơn bão có vận tốc gió 90km/h thuyên không thể đi được.
Đâu phải số đối đâu, nó giống một phương trình mà bạn cần chứng minh.
\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)
a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)
b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)
\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)
Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.
d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)
\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)
\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)
c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)
Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)
Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)
\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)
\(\Leftrightarrow13m^2+39m^2+23=0\)
...
a, Xét : n^5-n = n.(n^4-1)=n.(n^2-1).(n^2+1) = n.(n-1).(n+1).(n^2-4+5) = n.(n-1).(n+1).(n-2).(n+2) + 5.(n-1).n(n+1)
Ta thấy n-2;n-1;n-n+1;n+2 là 5 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 5
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 2.5 = 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : n-1 và n là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 => 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10 => n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng bằng nhau
k mk nha
\(M\in Z\)