K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bạn chỉ mình ! 

Bài này là bài Có biểu thức

và đây là phần c ) Tìm x để \(P< -\dfrac{1}{2}\), mình giải ra rồi P = \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\). Mình nghĩ ra mấy cách như thế này nhưng không biết nó cứ như nào ấy 

Cách 1 : Chuyển vế \(-\dfrac{1}{2}\) sang thì sẽ ra \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) , giải ra cũng ra kết quả là x<9

* Nhưng cho mình hỏi về cách này : Mình nghĩ là \(-\dfrac{3}{\sqrt{x}+3}\) đang nhỏ hơn \(-\dfrac{1}{2}\left(-0,5\right)\) , nó đang nhỏ hơn -0,5 mà nếu chuyển vế sang thì \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) ( mình nghĩ nếu nhỏ hơn 0 thì không thể nhỏ hơn -0,5 được ) , nhưng tại sao nó vẫn ra kết quả vậy ạ . Giair thích cho mình chỗ mà mình đang bị nhầm lẫn và sửa giúp mình nhá ! 

Cách 2 : Vẫn đê nguyên như cũ \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\) ( vì \(\sqrt{x}+3>0\) , 2>0 ) nên là mình nhân chéo . Mình lấy 1 công thức tổng quát : \(-\dfrac{a}{b}< -\dfrac{c}{d}\) 

* Nếu mà mình nhân theo kiểu \(-a.d< -c.b\)  và 1 kiểu khác \(b.\left(-c\right)< \left(-a\right).d\) hai kiểu này nó lại khác nhau mà làm theo kiểu thứ nhất thì nó lại đúng vẫn ra x<9 . Các bạn cũng chỉ mình chỗ sai nhé ạ và giúp mình sửa ạ 

Chị  Akai Haruma  , chị giúp em với ạ ! 

 

 

3
NV
25 tháng 7 2021

Tại sao em lại nghĩ nhỏ hơn 0 thì không nhỏ hơn -0.5 được?

\(-3< 0\) nhưng \(-3< -0.5\) vẫn đúng đó thôi, 2 điều này đâu liên quan đâu nhỉ?

Khi nhân chéo 1 BPT thì: nếu mẫu số luôn dương BPT sẽ giữ nguyên chiều, nếu mẫu số luôn âm BPT sẽ đảo chiều.

Với a;b;c;d dương:

Khi em để dạng \(-\dfrac{a}{b}< -\dfrac{c}{d}\) và nhân chéo: \(-ad< -bc\) (nghĩa là nhân b, d lên, 2 đại lượng này dương nên BPT giữ nguyên chiều, đúng)

Còn "kiểu khác" kia của em \(b.\left(-c\right)< \left(-a\right).d\) nó từ bước nào ra được nhỉ?

25 tháng 7 2021

thì vì cái P đó nó nhỏ hơn -0,5 nên bạn chuyển vế qua thành P+0,5<0 vẫn là 1 cách làm đúng (mình còn hay dùng cách này nữa mà)

còn khúc bạn lập luận vì nhỏ hơn 0 nên vẫn chưa chắc nhỏ hơn -0,5 có lẽ là bạn quên cái khúc mà nhỏ hơn 0 là bạn đã + 0,5 vào rồi nên nó ko phải là P nữa

và bài toán này có nhiều cách giải,bạn có thể làm như cách 1 và 2 cũng được,theo mình thì cách 2 mình ít khi làm vì phải cẩn thận ngồi xem dấu,cả 2 vế cùng dấu mới làm vậy được nên cũng hơi khó khăn,đó là theo mình thôi,còn bạn làm cách nào cũng được

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

Câu 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì \(\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\sqrt{a}-2< 0\)

hay 0<a<4

1 tháng 1 2018

ĐKXĐ: \(x\ne-1\)
\(\frac{1}{\sqrt{x^2+3}}+\frac{1}{\sqrt{1+3x^2}}=\frac{2}{x+1}\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+3}}-1+\frac{x+1}{\sqrt{3x^2+1}}-1=0\)
\(\Leftrightarrow\frac{x+1-\sqrt{x^2+3}}{\sqrt{x^2+3}}+\frac{x+1-\sqrt{3x^2+1}}{\sqrt{3x^2+1}}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2-3}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}+\frac{x^2+2x+1-3x^2-1}{\sqrt{3x^2+1}\left(x+1+\sqrt{3x^2+1}\right)}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}+\frac{-2x\left(x-1\right)}{\sqrt{3x^2+1}\left(x+1+\sqrt{3x^2+1}\right)}=0\)
\(\Leftrightarrow2\left(x-1\right)\left(\frac{1}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}-\frac{1}{\sqrt{\frac{1}{x^2}+3}\left(\frac{1}{x}+1+\sqrt{\frac{1}{x^2}+3}\right)}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)=\sqrt{\frac{1}{x^2}+3}\left(\frac{1}{x}+1+\sqrt{\frac{1}{x^2}+3}\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=\frac{1}{x^2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(tmđkxđ\right)\\x=-1\left(ktmđkxđ\right)\end{cases}\Rightarrow}x=1}\)
Vậy nghiệm của pt trên là x=1

1 tháng 1 2018

Xét tử:
\(2\sqrt{1-3x}+\sqrt[3]{x+9}-2=2\left(\sqrt{1-3x}+\frac{3x-5}{4}\right)+\left(\sqrt[3]{x+9}-\frac{-3x+1}{2}\right)\)
\(=2.\frac{1-3x-\frac{9x+25-30x}{16}}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{x+9-\left(\frac{-3x+1}{2}\right)^3}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{x+9}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}\)
\(=\frac{-18\left(x+1\right)^2}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{\frac{\left(x+1\right)\left(27x^2-54x+71\right)}{8}}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{x+9}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}\)
Xét mẫu : x2-2x-3=(x+1)(x-3)
\(\Rightarrow A=\frac{\frac{-18\left(x+1\right)}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{\frac{27x^2-54x+71}{8}}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{\left(x+9\right)}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}}{x-3}\)
\(lim_{x\rightarrow-1}A=\frac{19}{48}\)
Gõ nhờ tý nhé, ko phải đáp án đâu
 

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

A)

Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)

\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)

Có:

\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)

\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

B)

\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)

\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)

\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)

\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$

T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)

\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)

3 tháng 9 2017

a) CĂN ký hiệu =v nhé

8 = 2.22 ; x2 -4xy + (2y)2 = (x-2y)2

=> A = 2v2/(x-2y)

b;c tương tự

21 tháng 6 2017

1/

a) \(\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{2}\cdot\left(\sqrt{x}-3\right)+\sqrt{x}\cdot\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x-3}}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+\sqrt{x}+3\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+4\sqrt{x}+3}\)

21 tháng 6 2017

bài 2 : đk : \(x\ge0;x\ne1\)

a) P = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

P = \(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

P = \(\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) P = \(\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

P = \(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

P = \(\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) P = \(\dfrac{1}{2}\) \(\Leftrightarrow\) \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(\sqrt{x}+3=4-10\sqrt{x}\)

\(\Leftrightarrow\) \(11\sqrt{x}-1=0\) \(\Leftrightarrow\) \(11\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{11}\) \(x=\left(\dfrac{1}{11}\right)^2=\dfrac{1}{121}\)

25 tháng 7 2018

Hỏi đáp Toán

11 tháng 8 2018

\(1.\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=2-\sqrt{3}+1+\sqrt{3}=3\) \(2a.\sqrt{x^2-2x+1}=7\)

\(x^2-2x+1=49\)

\(x^2-2x-48=0\)

\(\left(x+6\right)\left(x-8\right)=0\)

\(x=8orx=-6\)

\(b.\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)

\(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

\(x-5=1-x\)

\(x=3\left(KTM\right)\)

KL.............

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)