Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+...+a_{0216}}{a_2+a_3+...+a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2017}\)
Trời ơi! Một đóng bài thế này bạn đăng lên 1 năm sau không biết có ai giải rồi hết chưa nữa, đăng từng cái lên thôi nha bạn , vừa nhìn vào đã thấy hoa mắt chóng mặt
Gọi giao điểm KD và BE tại I
ta có \(\widehat{DKA}+\widehat{KDA}=90^0\)
\(\widehat{DBI}+\widehat{BDI}=90^0\)
Mà \(\widehat{KDA}=\widehat{BDI}\left(đ.đ\right)\)
=> \(\widehat{DKA}=\widehat{ABI}\)
Ta lại có : góc DKA + góc KDA = Góc ABE+ góc AEB=\(90^0\)
Mà Góc DKA=ABI
=> Góc KDA= Góc AEB
=> tam giác KDA = Tam giác BAE (G.G.G)(tự cm )
=> AK=AB(Cạnh t/u)
mà AB=AC (gt )
=> AK=AC
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)
=> \(\frac{a}{d}=k^3\) (1)
Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)
Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Vì \(\frac{a}{b}< \frac{c}{d}\)=> ad<bc
* Cm: \(\frac{a}{b}< \frac{a+c}{b+d}\)
Vì ad<bc=> ad+ab< bc+ab
<=> a(b+d)<b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)(1)
* Cm \(\frac{a+c}{b+d}< \frac{c}{d}\)
Vì ad<bc => ad+cd<bc+cd
<=> d(a+c)<c(b+d)
<=> \(\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1)(2)=> \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)(đpcm)
Vì \(\frac{a}{b}\) < \(\frac{c}{d}\) nên ad < bc (1)
Xét tích a(b+d)= ab + ad (2)
b(a+c)= ba + bc (3)
Từ (1) , (2) , (3) suy ra
a(b+d) < b(a+c) do đó \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) (4)
Tương tự ta có \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) (5)
Kết hợp (4) , (5) ta được \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\)
a chửi đâu a ns trêu mà Nguyễn Thị Hậu
mà sao theo dõi j mà kinh khủng thế !!??
bài ở đâu đấy
Học nhà thầy Tùng