Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\forall m\) hệ có nghiệm duy nhất là: \(\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{5m-6}{m^2+3}\end{matrix}\right.\)
b, Có: \(x+y=1-\frac{m^2}{m^2+3}\)
\(\Leftrightarrow\frac{2m+5}{m^2+3}+\frac{5m-6}{m^2+3}=1-\frac{m^3}{m^2+3}\)
\(\Leftrightarrow m=\frac{7}{4}\)
Vậy .......
- puvi9176
- 16/01/2021
mx−2+m=3xmx−2+m=3x
a) Phương trình nhận x=12x=12 làm nghiệm
→m⋅12−2+m=3⋅12→m⋅12−2+m=3⋅12
→32m=72→32m=72
→m=73→m=73
b) mx−2+m=3xmx−2+m=3x
→(m−3)x=2−m→(m−3)x=2−m
Phương trình có nghiệm duy nhất
→m−3≠0→m−3≠0
→m≠3→m≠3
Khi đó:
a) dễ rồi bạn chỉ việc bế x = 1/2 vào tìm m bình thường
b) mx - 2 + m = 3x
<=> ( m - 3 )x + m - 2 = 0
Để pt có nghiệm duy nhất thì m - 3 ≠ 0 <=> m ≠ 3
Khi đó nghiệm duy nhất là x = -m+2/m-3
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2