Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1/2 x 2/3 x 3/4 x ..... x 2014/2015
= 1 x 2 x 3 x ... x 2014/2 x 3 x 4 x .... x 2015
= 1/2015
k mk nha
a = 1/2 nhân 2 + 1/3 nhân 3 + 1/4 nhân 4 + .....+ 1/2009 nhân 2009 + 1/2010 nhân 2010
so sánh a với 1
a=1/2.2+1/3.3+1/4.4+...+1/2009.2009+1/2010.2010(có 2009 số hạng)
a=1+1+1+...+1+1(2009 số 1)
a=1.2009=2009
Vậy a>1
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{2018+2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\) ( đúng ko bn ?? )
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
= \(\frac{1}{1}-\frac{1}{2019}=\frac{2018}{2019}\)
Học tốt
a) (456x35+65x456):19
=456x(65+35):19
=456x100:19
=45600:19
=2400
k mình nhé
Chúc bạn học giỏi
A = (1 - \(\frac{1}{2}\)) x (1 - \(\frac{1}{3}\)) x (1 - \(\frac{1}{4}\)) x (1 - \(\frac{1}{5}\)) x ... x (1 - \(\frac{1}{2014}\)) x (1 - \(\frac{1}{2015}\))
A = \(\frac{1}{2}\)x \(\frac{2}{3}\) x \(\frac{3}{4}\) x \(\frac{4}{5}\) x ... x \(\frac{2013}{2014}\)x \(\frac{2014}{2015}\)
A = \(\frac{1x2x3x4x...x2013x2014}{2x3x4x5x...x2014x2015}\)
A = \(\frac{1}{2015}\)
Vậy A = \(\frac{1}{2015}\)
~~~
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
mình ko viết lại đầu bài nhé
= 1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
= 1 - 1/6 = 5/6
trong phép tính đầu mỗi số hạng mk tách làm 1 hiệu nhé
thu lay 1/2 nhan1/3 nhan 1/4 nhan....nhan 1/2017 nhan 1/2018
\(C=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)
\(C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(C=\frac{1\cdot2\cdot3\cdot...\cdot2016\cdot2017}{2\cdot3\cdot4\cdot...\cdot2017\cdot2018}\)
\(C=\frac{1}{2018}\)