\(1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right).\frac{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

\(\Rightarrow C=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}-\frac{2x\sqrt{x}-\sqrt{x}+x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(1+\sqrt{x}+x\right)-\left(2x\sqrt{x}-\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(=1+\left[\frac{2\sqrt{x}+2x+2x\sqrt{x}-1-\sqrt{x}-x-2x\sqrt{x}+\sqrt{x}-x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(=1+\left[\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].-\frac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)

\(=1-\frac{\sqrt{x}}{1+\sqrt{x}+x}\) \(=\frac{1+\sqrt{x}+x-\sqrt{x}}{1+\sqrt{x}+x}=\frac{1+x}{1+\sqrt{x}+x}\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

27 tháng 10 2020

a) \(\sqrt{12}-3\sqrt{75}+0,5\sqrt{\left(-6\right)^2\cdot3}\)

\(=2\sqrt{3}-15\sqrt{3}+0,5\sqrt{108}\)

\(=-13\sqrt{3}+3\sqrt{3}\)

\(=-10\sqrt{3}\)

b) \(3\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{4+2\sqrt{3}}\)

\(=3\left|\sqrt{2}-\sqrt{3}\right|-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=3\left(\sqrt{3}-\sqrt{2}\right)-\left|\sqrt{3}+1\right|\)

\(=3\sqrt{3}-3\sqrt{2}-\sqrt{3}-1\)

\(=2\sqrt{3}-3\sqrt{2}-1\)

c) \(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\div\frac{1}{x-2\sqrt{x}+1}\)

\(=\frac{2x+1-\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)

\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

8 tháng 11 2021

\(A=\left(a-1\right)\sqrt{\frac{a}{a-1}}+\sqrt{a\left(a-1\right)}-a\sqrt{\frac{a-1}{a}}\)

\(A=\sqrt{\left(a-1\right)^2.\frac{a}{a-1}}+\sqrt{a\left(a-1\right)}-\sqrt{a^2.\frac{a-1}{a}}\)

\(A=\sqrt{\left(a-1\right)a}+\sqrt{a\left(a-1\right)}-\sqrt{a\left(a-1\right)}\)

\(A=\sqrt{a\left(a-1\right)}\)