Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2018}-x^{18}=0\)
\(x^{18}.\left(x^{2018}-1\right)=0\)
\(=>\orbr{\begin{cases}x^{18}=0\\x^{2018}-1=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) 275 > 81x
<=> 315 > 34x
<=> 15 > 4x
<=> x < 15 /4
c) 1252+x > 258
<=> 53(2+x) > 516
<=> 3(2+x) > 16
<=> 6 + 3x > 16
<=> 3x > 10
<=> x > 10/3
d) 5x . 5x+1 . 5x+2 <= 100...0 ( 18 số 0 ) : 218
<=> 5x+x+1+x+2 <= 1018 : 218
<=> 53x+3 <= 518
<=> 3x+3 <= 18
<=> 3x <= 15
<=> x <= 5
( <= là bé hơn hoặc bằng )
a) \(2^x=32\)
Ta có: \(2^5=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b) Sửa đề tí: \(9< 3^x< 81\)
\(\Rightarrow3^2< 3^x< 3^4\)
\(\Rightarrow2< x< 4\)
\(\Rightarrow x=\left\{3\right\}\)
Vậy x = 3
c) Ta có: \(25\le5^x\le125\)
\(\Rightarrow5^2\le5^x\le5^3\)
\(\Rightarrow2\le x\le3\)
\(\Rightarrow x=\left\{2;3\right\}\)
Vậy x = 2 hoặc x = 3
d) \(\left(x-2\right)^3\times5=40\)
\(\Rightarrow\left(x-2\right)^3=8\)
Mà \(8=2^3\Rightarrow\left(x-2\right)^3=2^3\)
Suy ra: x - 2 = 2
Vậy x = 4
Ta có \(5^{3x+3}\le10^{18}\div2^{18}\Rightarrow5^{3x+3}\le5^{18}\)
\(\Rightarrow3x+3\le18\) ; \(x\le5\)
\(\Rightarrow x\in\left\{0;1;2;3;4;5\right\}\)
1. a) Ta có:
\(A=333^{444}=\left(333^4\right)^{111}\)
\(B=444^{333}=\left(444^3\right)^{111}\)
A và B đã cùng số mũ là \(111\) . Bây giờ ta so sánh \(333^4\) và \(444^3\)
\(333^4=\left(3.111\right)^4=3^4.111^4=81.111^4\)
\(444^3=\left(4.111\right)^3=4^3.111^3=64.111^3\)
Ta thấy : \(84.111^4>64.111^3\)
=> \(333^4>444^3\)
1. b) Ta có:
\(3^{24680}=\left(3^2\right)^{12340}\)
\(2^{37032}=\left(2^3\right)^{12340}\)
\(3^2=9\)
\(2^3=8\)
\(9>8\) hay \(\left(3^2\right)^{12340}>\left(2^3\right)^{12340}\)
=> \(3^{24680}>2^{37020}\)
a) \(\frac{18^4.3^2.8^3}{27^3.16^2}=\frac{\left(2.3^2\right)^4.3^2.\left(2^3\right)^3}{\left(3^3\right)^3.\left(2^4\right)^2}=\frac{2^4.2^9.3^8.3^2}{3^9.2^8}=\frac{2^{13}.3^{10}}{3^9.2^8}=3.2^5=96\)
b) \(\frac{35^5.9^3.8^5}{81^4.32^5}=\frac{35^5.\left(3^2\right)^3.\left(2^3\right)^5}{\left(3^4\right)^4.\left(2^5\right)^5}=\frac{35^5.3^6.2^{15}}{3^{16}.2^{25}}=\frac{35^5}{3^{10}.2^{10}}=\frac{35^5}{6^{10}}\)
c) \(\frac{48^5.18^2}{81^2.34^4}=\frac{\left(2^4.3\right)^5.\left(2.3^2\right)^2}{\left(3^4\right)^2.\left(2.17\right)^4}=\frac{2^{20}.3^5.2^2.3^4}{3^8.2^4.17^4}=\frac{2^{22}.3^9}{3^8.2^4.17^4}=\frac{2^{18}.3}{17^4}\)
d) \(\frac{54^7.27^3.16^2}{243^2.64^3}=\frac{\left(2.3^3\right)^7.\left(3^3\right)^3.\left(2^4\right)^2}{\left(3^5\right)^2.\left(2^6\right)^3}=\frac{2^7.3^{21}.3^9.2^8}{3^{10}.2^{18}}=\frac{2^{15}.3^{30}}{3^{10}.2^{18}}=\frac{3^{20}}{2^3}\)
Bài 1 : Theo đề ta có :
5x . 5x+1 . 5x+2 \(\le\)100....000 ( 18 chữ số 0 ) : 218 ( x \(\in\)N )
=> 5x+x+1+x+2 \(\le\)1018 : 218
=> 53x+3 \(\le\)518
=> 3x + 3 \(\le\)18
=> 3x \(\le\)15
=> x \(\le\)5
Mà x \(\in\)N nên x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Bài 2 : Ta có :
S = 1 + 2 + 22 + 23 + ... + 22005
2S = 2 + 22 + 23 + 24 + ... + 22006 ( Nhân 2 các số hạng trong tổng )
S = 2S - S = ( 2 + 22 + 23 + 24 + ... + 22006 ) - ( 1 + 2 + 22 + 23 + .. + 22005 )
= 22006 - 1 ( Triệt tiệu các số hạng giống nhau )
=> S < 22006
Mặt khác 5 . 22004 > 4 . 22004 = 22 . 22004 = 22006
=> 5 . 22004 > 22006
Do đó S < 5. 22004
Vậy S < 5 . 22004
a) \(3^{x+1}.15=135\)
\(\Rightarrow3^{x+1}=9\)
\(\Rightarrow3^{x+1}=3^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)
c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)
d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)
Bg
c) 9 < 3x : 3 < 81
=> 32 < 3x - 1 < 34
=> x - 1 = {2; 3; 4}
=> x = {3; 4; 5}
d) 5x . 5x + 1 . 5 x + 2 < 218 . 518 : 218
=> 5x + x + 1 + x + 2 < 218 : 218 . 518
=> 53x + 3 < 1.518
=> 53.(x + 1) < 518
=> 3.(x + 1) < 18
=> x + 1 < 18 : 3
=> x + 1 < 6
=> x < 6 - 1
=> x < 5
c. \(9\le3^x:3\le81\)
\(\Rightarrow3^2\le3^{x-1}\le3^4\)
\(\Rightarrow3^{x-1}\in\left\{3^2;3^3;3^4\right\}\)
\(\Rightarrow x-1\in\left\{2;3;4\right\}\)
\(\Rightarrow x\in\left\{3;4;5\right\}\)
d. Thêm đk : x thuộc N
\(5^x.5^{x+1}.5^{x+2}\le2^{18}.5^{18}:2^{18}\)
\(\Rightarrow5^{x+x+1+x+2}\le5^{18}\)
\(\Rightarrow x+x+x+1+2\le18\)
\(\Rightarrow3x+3\le18\)
\(\Rightarrow3\left(x+1\right)\le18\)
\(\Rightarrow x+1\le6\)
\(\Rightarrow x\le5\)
\(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)