Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
cộng vào mỗi phân số trong 98 phân số sau,trừ phân số cuối đi 98 , ta được :
\(M=1+\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{2}{98}+1\right)+\left(\frac{1}{99}+1\right)\)
\(M=\frac{100}{100}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
chuyển phân số \(\frac{100}{100}\)ra sau , ta được :
\(M=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}\)
\(M=100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)
\(\Rightarrow\frac{M}{N}=\frac{100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}=100\)
\(=\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{97}{96}.....\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử và mẫu thì được
\(\frac{99}{100}.\frac{99}{1}\)
\(=\frac{9801}{100}\)
= \(\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{96}{97}...\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử số và mẫu số thì đc :
\(\frac{99}{100}.\frac{99}{1}\)
= \(\frac{9801}{100}\)
A=1-2+3-4+...+99-100 SSH=(100-1):1+1=100 Sh
=>A=(1-2)+(3-4)+....+(99-100)
vì chia thành cặp suy ra 100:2 =50 cặp
A=(-1)+(-1)+...(-1)
A=(-1).50
A=-50
đề :
= 1/100 - (1 / 100.99 +1/99.98 + ...+ 1/3.2 +1/2.1 )
=1/100 - (1 /1.2 +1/ 2.3 +...+ 1/ 98.99 +1 / 99.100)
=1/100 -( 1- 1/ 2 +1/2 -1/3 +...+1/98 -1/99 +1/99 -1/100)
=1/100 - ( 1- 1/100)
=1/100 - 99 /100
= -98/100
= -49 /50
=1/100-(1/1x2+1/2x3+...+1/99x100)
=1/100-(1-1/2+1/2-1/3+...+1/99-1/100)
=1/100-(1-1/100)
=1/100-1+1/100
=2/100-1
=-49/50
\(\frac{49}{50}\)