Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{1}{99\cdot101}\)
\(=2\cdot\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2} \cdot\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}\cdot\frac{100}{101}\)
\(=\frac{50}{101}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(\frac{1}{1.3}+\frac{1}{3,5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
-.-
a. \(\frac{1}{5}+\frac{3}{4}+\frac{1}{10}\)
= \(\frac{4}{20}+\frac{15}{20}+\frac{2}{20}\)
= \(\frac{21}{20}\)
b. \(\frac{5}{6}-\frac{1}{3}+\frac{1}{6}\)
= \(\frac{5}{6}-\frac{2}{6}+\frac{1}{6}\)
= \(\frac{4}{6}=\frac{2}{3}\)
c. \(\frac{3}{8}-\frac{10}{2}:\frac{4}{5}\)
= \(\frac{3}{8}-\frac{50}{8}\)
= \(\frac{-47}{8}\)
a) \(\frac{1}{5}+\frac{3}{4}+\frac{1}{10}\)
= \(\frac{4+15+2}{20}\)
= \(\frac{21}{20}\)
b) \(\frac{5}{6}-\frac{1}{3}+\frac{1}{6}\)
= \(\frac{5-2+1}{6}\)
= \(\frac{4}{6}\)
c) \(\frac{3}{8}-\frac{10}{2}:\frac{4}{5}\)
= \(\frac{3}{8}-\frac{25}{4}\)
= \(-\frac{47}{8}\)
#)Giải :
\(\left(\frac{1}{2}\right)^{15}\div\left(\frac{1}{4}\right)^{20}=\left(\frac{1}{2}\right)^{15}\div\left(\frac{1}{2}\right)^{40}=\left(\frac{1}{2}\right)^{-25}\)
( 3x + 1 )\(^3\)= 64
( 3x + 1 )\(^3\)= 4\(^3\)
=> 3x + 1 = 4
3x = 4 - 1
x = 3 : 3
x = 1
Vậy, x = 1