Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P\left(-1\right)=-a+b=5\Rightarrow b=a+5\) (1)
\(P\left(-2\right)=-2a+b=7\Rightarrow b=2a+7\) (2)
Từ (1) có: \(2a+7=a+5\Rightarrow a=-2\Rightarrow b=3\)
Vậy ta có: \(P\left(x\right)=-2x+3\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11
Ta có: f(0)=1
<=> ax2 +bx+c=1
<=> c=1
f(1)=0
<=>ax2 +bx+c=0
<=> a+b+c=0
mà c=1
=>a+b=-1(1)
f(-1)=10
<=> ax2 +bx +c=10
<=>a-b+c=10
mà c=1
=>a-b=9(2)
Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9
<=> 2b=-10
<=> b=-5
=>a=4
Vậy a=4,b=-5,c=1
Vì f(x) có bậc 1 nên f(x)=ax+7
f(-2)=5
=>-2a+7=5
=>-2a=-2
hay a=1
Lời giải:
Ta có:
\(P(-1)=a(-1)+b=-a+b=5\Rightarrow b=5+a\)
\(P(-2)=a(-2)+b=-2a+b=7\)
Thay $b=5+a$ ta có: $-2a+5+a=7$
$\Rightarrow a=-2\Rightarrow b=3$
Vậy đa thức cần tìm là $P(x)=-2x+3$
Lời giải:
$P(-1)=a(-1)+b=-a+b=5\Rightarrow b=a+5$
$P(-2)=a(-2)+b=-2a+b=7$
Thay $b=a+5$ ta có: $-2a+a+5=7$
$\Leftrightarrow a=-2$
$\Rightarrow b=-2+5=3$
Vậy đa thức $P(x)=-2x+3$