K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

3x3 + 10x2 + 2 = 3x3 + x2 + 9x2 + 3x - 3x - 1 + 3

= x2( 3x + 1 ) + 3x( 3x + 1 ) - ( 3x + 1 ) + 3

= ( 3x + 1 )( x2 + 3x - 1 ) + 3

Vì ( 3x + 1 )( x2 + 3x - 1 ) ⋮ ( 3x + 1 )

=> 3 ⋮ ( 3x + 1 ) <=> ( 3x + 1 ) ∈ Ư(3) ( đến đây bạn tự xét giá trị nhé )

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

25 tháng 9 2021

Mình đang cần gấp

20 tháng 5 2016

a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)

Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4

b) Cho n-1=0 => n=1

Sau đó thay vào biểu thức 10n2+n -10 sẽ  tìm ra n=1

Cho mình nha!!! <3

23 tháng 4 2016

Bài 1:

a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)  

TH1: \(\frac{3x-2}{4}\)  = \(\frac{3x+3}{6}\) 

=> (3x-2)6 = (3x+3)4

     18x -12= 12x+12

=> x = 4

TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\) 

=> (3x-2)6 > (3x+3)4

     18x-12> 12x+12

=> x \(\ge\) 5

b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2

c) Phần c bạn cũng xét tương tự như phần a 

TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)

TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)

23 tháng 4 2016

Đã xem -_-
 

16 tháng 8 2019

TA CÓ: 

\(\frac{x^3-3x^2-3x-1}{x^2+x+1}=x^3-\frac{3\left(x^2+x+1\right)+2}{x^2+x+1}\)

\(=x^3-3+\frac{2}{x^2+x+1}\)

Để thỏa mãn đề bài => \(x^2+x+1\inƯ\left(2\right)\)

\(\Rightarrow x^2+x+1\in\left\{\pm1;\pm2\right\}\)

\(\Rightarrow x^2+x\in\left\{0;-2;1;-3\right\}\)

\(\Rightarrow x\left(x+1\right)\in\left\{0;-2;1;-3\right\}\)

đến đây làm nốt

16 tháng 8 2019

123456789