K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

a)\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\)

\(\Leftrightarrow\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)

\(\Leftrightarrow\begin{cases}c< 0\\ab+bc+ca+c^2=c^2\end{cases}\)\(\Leftrightarrow ab+bc+ca=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\)

Đpcm

20 tháng 10 2016

phần b chắc quy đồng nó lên quá =))

21 tháng 9 2016

quá đơn giản

ở trên  a(a-b)+b(b-c)+c(c-a)+0 suy ra a=b=c

thay vào k=a^3x3-3a^3=3a^2 -3a+5=3a^2+-3a+5

min của k là min của 3a^2-3a+5 là bằng 17/4

27 tháng 2 2017

Câu 7:

\(x^2+3>0\) nên để B đạt giá trị lớn nhất thì \(x^2+3\) nhỏ nhất

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2+3\ge3\)

\(\Rightarrow\frac{9}{x^2+3}\le\frac{9}{3}=3\)

Vậy \(MAX_B=3\) khi x = 0

27 tháng 2 2017

Câu 8:

Giải:
\(B\in Z\Rightarrow2x-3⋮2x+1\)

\(\Rightarrow\left(2x+4\right)-7⋮2x+1\)

\(\Rightarrow2\left(x+2\right)-7⋮2x+1\)

\(\Rightarrow7⋮2x+1\)

\(\Rightarrow2x+1\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{0;-1;3;-4\right\}\)

Vậy \(x\in\left\{-4;-1;0;3\right\}\)

19 tháng 11 2016

Evaluate the expression ?$x^3+12x+48x+64$ at ?$x=-4$

x3 + 12x + 48x + 64

= (x + 4)2

= (- 4 + 4)2

= 02

= 0

Fill in the blank: ?$x^3-$............?$=(x-2)(x^2+2x+4)$

x3 - a = (x - 2)(x2 + 2x + 4)

x3 - a = x3 - 8

a = 8

Fill in the blank: ?$(x-1)^3=x^3-3x^2+$?$x-1$
(x - 1)3
= x3 - 3x2 + 3x - 1
 
Fill in the blank: ?$(x+1)^3=x^3+$?$x^2+3x+1$
(x + 1)3
= x3 + 3x2 + 3x + 1

Evaluate ?$(a-b)^2$, given ?$a+b=8$ and ?$ab=10$.
Answer: ?$(a-b)^2=$

a + b = 8

(a + b)2 = 82

a2 + b2 + 2ab = 64

a2 + b2 + 2 . 10 = 64

a2 + b2 + 20 = 64

a2 + b2 = 64 - 20

a2 + b2 = 44

(a - b)2

= a2 - 2ab + b2

= 44 - 2 . 10

= 44 - 20

= 24
Given ?$A=(x-5)(x^2+5x+25)-x^2(x+3)+3x^2$.
Evaluate A at ?$x=1000$.
Answer: A?$=$

A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2

= x3 - 125 - x3 - 3x2 + 3x2

= - 125

Given ?$A=(x-5)(2x+1)-2x(x-3)+3x$.
Evaluate A at ?$x=100$.
Answer: A?$=$

A = (x - 5)(2x + 1) - 2x(x - 3) + 3x
= 2x2 + x - 10x - 5 - 2x2 + 6x + 3x
= - 5
Given a rectangle with dimension ?$(2x+y)$ by ?$(2x-y)$. Find the area of the rectangle when ?$x=\sqrt{10}m$ and ?$y=1m$.
Answer: ?$m^2$.
 
Given ?$ab=4$ and ?$a-b=5$. Evaluate ?$a^3-b^3$.
Answer: ?$a^3-b^3=$
a - b = 5
(a - b)2 = 52
a2 - 2ab + b2 = 25
a2 + b2 - 2 . 4 = 25
a2 + b2 - 8 = 25
a2 + b2 = 25 + 8
a2 + b2 = 33
a3 - b3
= (a - b)(a2 + ab + b2)
= 5 . (33 + 4)
= 5 . 37
= 185

Given ?$ab=4$ and ?$a+b=5$. Evaluate ?$a^3+b^3$.
Answer: ?$a^3+b^3=$
a + b = 5
(a + b)2 = 52
a2 + 2ab + b2 = 25
a2 + b2 + 2 . 4 = 25
a2 + b2 + 8 = 25
a2 + b2 = 25 - 8
a2 + b2 = 17
a3 + b3
= (a + b)(a2 - ab + b2)
= 5 . (17 - 4)
= 5 . 13
= 65
Bài thi số 3 19:25 Câu 1: A man drove a car from A to B at speed 60km/h. After arriving B, he took a rest for 30 minutes then turned back to A at speed 40km/h. Known that he started from A at 7:00 am and he reached A again at 3:15pm on the same day. The distance between A and B is km. Câu 2: The minimum of the expression is Câu 3: Given that is a positive integer such that and are perfect squares. The sum of such integers is Câu 4: Given two...
Đọc tiếp

Bài thi số 3

19:25
Câu 1:
A man drove a car from A to B at speed 60km/h. After arriving B, he took a rest for 30 minutes then turned back to A at speed 40km/h. Known that he started from A at 7:00 am and he reached A again at 3:15pm on the same day. The distance between A and B is km.
Câu 2:
The minimum of the expression is
Câu 3:
Given that is a positive integer such that and are perfect squares.
The sum of such integers is
Câu 4:
Given two triangles and . Known that , and .
If then
Câu 5:
How many real numbers are there such that ?
Answer: There are numbers .
Câu 6:
The operation on two numbers produces a number equal to their sum minus 2.The value of is
Câu 7:
ABC is a triangle. AM is the bisector of angle CAB. Given that AM = 4cm, AB = 6m and AC = 12cm.Then the measurement of angle BAC is degrees.
Câu 8:
In the equation above, where is a constant.The greatest possible value of such that the equation has at least one solution is
Câu 9:
and are positive integers such that , where is a prime number.
The number of pairs is
Câu 10:
Given that .
Calculate:
=
(Input the answer as a decimal in its simplest form)
Nộp bài
7
10 tháng 4 2017

câu 7 mk bấm nhầm đáp án là 120

qua B kẻ đường thẳng song song với AM cắt AC ở N.

vì AM là phân giác góc BAC nên có :

\(\dfrac{AC}{AB}=\dfrac{CM}{BM}=\dfrac{12}{6}=2\) suy ra \(\dfrac{CM}{BC}=\dfrac{CM}{CM+BM}=\dfrac{12}{12+6}=\dfrac{2}{3}\)

vì AM song song với BN nên có :

1,\(\dfrac{CA}{AN}=\dfrac{CM}{BM}=\dfrac{12}{AN}=2\) suy ra AN=6

2,\(\dfrac{AM}{BN}=\dfrac{CM}{BC}=\dfrac{2}{3}=\dfrac{4}{BN}\)suy ra BN=6

vì AB=6 nên tam giác ABN đều

suy ra \(\widehat{NAB}\)=\(60^0\)

\(\widehat{NAB}+\widehat{BAC}=\)\(180^0\)

nên \(\widehat{BAC}=\)\(120^0\)

7 tháng 4 2017

bài này bữa mình thi có 50đ à hehe

10 tháng 8 2016

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

22 tháng 9 2016

Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}==\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}\)

\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2+y^2+z^2}{1}\)

\(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Rightarrow2\left(xy+yz+zx\right)=0\)

\(\Rightarrow xy+yz+zx=0\)

 

Câu 1:Kết quả của phép cộng hai phân thức với khác 1 là Câu 2:Tổng bốn góc trong của một tứ giác lồi bằng Câu 3:Số nghiệm của phương trình là Câu 4:Số nghiệm của phương trình là Câu 5:Cho và . Khi đó, giá trị của biểu thức bằng . Câu 6:Số nguyên tố n lớn hơn 3 để giá trị của biểu thức chia hết cho giá trị của biểu thức là Câu 7:Cho hình vuông ABCD có độ...
Đọc tiếp
Câu 1:Kết quả của phép cộng hai phân thức với khác 1 là
Câu 2:Tổng bốn góc trong của một tứ giác lồi bằng
Câu 3:Số nghiệm của phương trình
Câu 4:Số nghiệm của phương trình
Câu 5:Cho .
Khi đó, giá trị của biểu thức bằng .
Câu 6:Số nguyên tố n lớn hơn 3 để giá trị của biểu thức chia hết cho giá trị của biểu thức
Câu 7:Cho hình vuông ABCD có độ dài đường chéo bằng 12 cm.
M là một điểm bất kỳ trên cạnh AB, O là giao điểm hai đường chéo.
Đường thẳng qua O và vuông góc với OM cắt BC tại N. Diện tích tứ giác OMBN bằng .
Câu 8:Giá trị lớn nhất của biểu thức
Câu 9:Cho tam giác ABC có đường cao AH trọng tâm G. Một đường thẳng đi qua G
và song song với BC cắt các cạnh AB, AC tại M và N. Nếu diện tích tam giác ABC bằng 36
thì diện tích tam giác HMN bằng
Câu 10:Cho là các số thỏa mãn
Khi đó giá trị của biểu thức
3
26 tháng 2 2017

Bài 10:

\(P=2x^2-2xy+y^2+4x+4=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)\)

\(P=\left(x-y\right)^2+\left(x+2\right)^2=0\)

ta có: \(\left\{\begin{matrix}\left(x-y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow P=0\Leftrightarrow\left\{\begin{matrix}x=-2\\y=x=-2\end{matrix}\right.\)

\(\Rightarrow A=\left(-2\right)^4+\left(-2\right)^4=32\)

26 tháng 2 2017

Các bạn giải gấp cho mình câu 3 nhé mình đang cần

24 tháng 12 2016

Ta chứng minh BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\), dấu "=" xảy ra khi \(a=b=c\), Áp dụng BĐT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\);\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân 2 vế của BĐT ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\).Dấu "=" xảy ra khi \(a=b=c\)

Áp dụng vào bài toán ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\) (a,b,c có tổng bằng 1)

Dấu "=" xảy ra khi \(\begin{cases}a+b+c=1\\a=b=c\end{cases}\)\(\Rightarrow a=b=c=\frac{1}{3}\)

 

 

18 tháng 2 2017

Vòng mấy v bn?

18 tháng 2 2017

Câu 4:
A B C D

Giải:
Gọi hình vuông đó là ABCD, đường chéo là BD

Ta có: AB = BC = CD = DA

Xét \(\Delta ABD\left(\widehat{A}=90^o\right)\), áp dụng định lí Py-ta-go ta có:
\(AD^2+AB^2=BD^2\)

\(\Rightarrow2AB^2=50\)

\(\Rightarrow AB^2=25\)

\(\Rightarrow AB=5\)

\(\Rightarrow AB=BC=CD=DA=5\)

Vậy...

Câu 5:

Ta có: \(x+y=7\)

\(\Rightarrow\left(x+y\right)^2=49\)

\(\Rightarrow x^2+2xy+y^2=49\)

\(\Rightarrow2xy+25=49\)

\(\Rightarrow2xy=24\)

\(\Rightarrow xy=12\)

Vậy xy = 12