Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\text{1.5.6 + 2.10.12 + 3.15.18 + 4.20.24 + 5.25.30}}{\text{1.3.5 + 2.6.10 + 3.9.15 + 4.12.20 + 5.15.25 }}\)
\(=\frac{1.5.6+2.\left(1.5.6\right)+3.\left(1.5.6\right)+4.\left(1.5.6\right)+5.\left(1.5.6\right)}{1.3.5+2.\left(1.3.5\right)+3.\left(1.3.5\right)+4.\left(1.3.5\right)+5.\left(1.3.5\right)}\)
\(=\frac{30.\left(1+2+3+4+5\right)}{15.\left(1+2+3+4+5\right)}\)
\(=\frac{30}{15}=2\)
Vậy A=2.
\(=\frac{1.5.6+\left(1.5.6\right).2+\left(1.5.6\right).3+\left(1.5.6\right).4+\left(1.5.6\right).5}{1.3.5+\left(1.3.5\right).2+\left(1.3.5\right).3+\left(1.3.5\right).4+\left(1.3.5\right).5}\)
\(=\frac{\left(1.5.6\right).\left(1+2+3+4+5\right)}{\left(1.3.5\right).\left(1+2+3+4+5\right)}=\frac{1.5.6}{1.3.5}=\frac{1.1.2}{1.1.1}=2\)
A= \(\frac{1.5.3.2+2.10.2.6+2.15.9.2+4.20.12.2+5.25.15.2}{1.3.5+2.6.10+3.9.15+4.12.20+5.15.25}\)
A= \(\frac{2+2+2\cdot2+2+2}{0+0+3+0+0}\)
A= \(\frac{12}{3}\)
A= 4
Đầu tiên bạn tách ra, rút gọn rồi cộng lại,tính nha!
\(A=\dfrac{15\left(1+2\cdot4+64\right)}{35+240+2240}\)
\(=\dfrac{15\cdot73}{2515}=\dfrac{15\cdot73}{5\cdot503}=\dfrac{3\cdot73}{503}=\dfrac{219}{503}>\dfrac{3}{8}\)
\(\frac{1.3.5+2.6.10+4.12.20}{1.5.7+2.10.14+4.20.28}\)
\(=\frac{3.5+2.3.2.5.2+4.3.4.5.4}{5.7+2.5.2.2.7+4.4.5.7.4}\)
\(=\frac{3.5.\left(1+2.2.2+4.4.4\right)}{5.7.\left(1+2.2.2+4.4.4\right)}\)
\(=\frac{3}{7}>\frac{3}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)\(\dfrac{a+b-c}{c}=1\Leftrightarrow\dfrac{a+b}{c}-\dfrac{c}{c}=1\Leftrightarrow\dfrac{a+b}{c}-1=1\Leftrightarrow\dfrac{a+b}{c}=2\)\(\dfrac{b+c-a}{a}=1\Leftrightarrow\dfrac{b+c}{a}-\dfrac{a}{a}=1\Leftrightarrow\dfrac{b+c}{a}-1=1\Leftrightarrow\dfrac{b+c}{a}=2\)\(\dfrac{c+a-b}{b}=1\Leftrightarrow\dfrac{c+a}{b}-\dfrac{b}{b}=1\Leftrightarrow\dfrac{c+a}{b}-1=1\Leftrightarrow\dfrac{c+a}{b}=2\)\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\\ =\dfrac{a+b}{a}\cdot\dfrac{b+c}{b}\cdot\dfrac{c+a}{c}\\ =\left(a+b\right)\cdot\dfrac{1}{a}\cdot\left(b+c\right)\cdot\dfrac{1}{b}\cdot\left(c+a\right)\cdot\dfrac{1}{c}\\ =\left(a+b\right)\cdot\dfrac{1}{c}\cdot\left(b+c\right)\cdot\dfrac{1}{a}\cdot\left(c+a\right)\cdot\dfrac{1}{b}\\ =\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}\\ =2\cdot2\cdot2\\ =8\)
Vậy \(P=8\)
2.
\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)
Vậy \(A< 3\)
b,
\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)
Vậy \(B< 2\)
\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)
\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)
\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)
\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)
Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)
Vậy P < Q
A=\(\dfrac{1.5.6+2.\left(1.5.6\right)+3.\left(1.5.6\right)+4.\left(1.5.6\right)+5.\left(1.5.6\right)}{1.3.5+2.\left(1.3.5\right)+3.\left(1.3.5\right)+4.\left(1.3.5\right)+5.\left(1.3.5\right)}\)
A=\(\dfrac{\left(1+2+3+4+5\right).\left(1.5.6\right)}{\left(1+2+3+4+5\right).\left(1.3.5\right)}\) = \(\dfrac{1.5.6}{1.3.5}\) = 2