Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-5x^2-5x=3\)
\(\Rightarrow-5x=3\Rightarrow x=-\dfrac{3}{5}\)
b, \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2-4\right)=0\)
\(\Rightarrow8x+16-5x^2-10x+4x^2-4x-8+2x^2-8=0\)
\(\Rightarrow\left(8x-10x-4x\right)+\left(16-8-8\right)+\left(-5x^2+4x^2+2x^2\right)=0\)
\(\Rightarrow-6x+x^2=0\)
\(\Rightarrow x.\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Chúc bạn học tốt!!!
a, 2 x ·2+3 (x -1)(x +1)=5 x (x +1)
2 ·2 x+3(x -1)(x +1)=5x(x +1) 4 x+3 (x -1)(x +1)=5 x (x +1)
Kết quả: X ∈ {(- 1/4+√23/4 I) ,(- 1/4-√23/4 I)} |
a: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
hay x=1/7
b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
=>12x+10=6x+5
=>6x=-5
hay x=-5/6
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
1.
a, \(\left(x+3\right)\left(x-3\right)-\left(x-3\right)^2\)
\(=\left(x-3\right)\left(x+3-x+3\right)\)
\(=9\left(x-3\right)=9x-27\)
b, \(\left(2x+1\right)^2+2\left(2x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(2x+1+x-1\right)^2=9x^2\)
c, \(x\left(x-3\right)\left(x+3\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-9\right)-\left(x^4-1\right)\)
\(=x^3-9x-x^4+1=-x^4+x^3-9x+1\)
\(a,x^4-4x^3+x^2-4x=0\)
\(\Rightarrow\left(x^4-4x^3\right)+\left(x^2-4x\right)=0\)
\(\Rightarrow x^3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x^2+x\right)=0\)
\(\Rightarrow x\left(x-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-1\end{matrix}\right.\)
\(b,x^3-5x^2+4x-20=0\)
\(\Rightarrow\left(x^3-5x^2\right)+\left(4x-20\right)=0\)
\(\Rightarrow x^2\left(x-5\right)+4\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x^2+4=0\end{matrix}\right.\)
\(\Rightarrow x=5\)
a) \(x^4-4x^3+x^2-4x=0\)
\(\Leftrightarrow\left(x^4-4x^3\right)+\left(x^2-4x\right)=0\)
\(\Leftrightarrow x^3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3+x\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x^2+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x^2=-1\left(loai\right)\end{matrix}\right.\)
Vậy x=0; x=4
b) \(x^3-5x^2+4x-20=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(4x-20\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x^2+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x^2=-4\left(loai\right)\end{matrix}\right.\)
Vậy x=5
a)5x+9(x-3)=20170 5x+9x-27=1 14x=1+27 14x=28 x=28:14 x=2 b)-19x-20 =7x-8 -19x-7x=20-8 -26x= 12 x=-12/26=-6/13 c)(2x-5)2=9 (2x-5)2=(+-3)2 =>2x-5=+-3 TH1:2x-5=3 2x=8 x=4 TH2:2x-5=-3 2x=2 x= 1
a, \(-3x^2+5x>0\)
\(\Leftrightarrow x\left(-3x+5\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\-3x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-3x+5< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< \frac{5}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>\frac{5}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow0< x< \frac{5}{3}\)
(vì không có giá trị nào của x thỏa mãn \(x< 0,x>\frac{5}{3}\))
Vậy bất phương trình có nghiệm: \(0< x< \frac{5}{3}\)
b, \(x^2-x-6< 0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2< 0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -2\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow-2< x< 3\)
(vì không có giá trị nào của x thỏa mãn \(x< -2,x>3\))
Vậy bất phương trình có nghiệm: \(-2< x< 3\)
2 câu còn lại tương tự nhé.