Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐKXĐ: \(2-3x>0\Rightarrow x< \frac{2}{3}\)
\(\Leftrightarrow3x-m+5+2-3x=2x+2m-1\)
\(\Leftrightarrow2x=8-3m\Rightarrow x=\frac{8-3m}{2}\)
Để pt đã cho có nghiệm
\(\Rightarrow\frac{8-3m}{2}< \frac{2}{3}\Leftrightarrow24-9m< 4\Rightarrow m>\frac{20}{9}\)
Bài 2:
\(\Leftrightarrow\left(x-2\right)^4+4\left(x^2+2x-1\right)^4-5\left(x-2\right)^2\left(x^2+2x-1\right)^2=0\)
Đặt \(\left\{{}\begin{matrix}\left(x-2\right)^2=a\ge0\\\left(x^2+2x-1\right)^2=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2+4b^2-5ab=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=\left(x^2+2x-1\right)^2\\\left(x-2\right)^2=4\left(x^2+2x-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x^2+2x-1+x-2\right)\left(x^2+2x-1-x+2\right)=0\\\left(2x^2+4x-2+x-2\right)\left(2x^2+4x-2-x+2\right)=0\end{matrix}\right.\)
Bạn tự giải nốt, dạng cơ bản
ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\)
\(\Rightarrow x\in[m-1;2m)\)
Để hàm xác định trên (3;4)
\(\Rightarrow\left(3;4\right)\subset[m-1;2m)\)
\(\Rightarrow\left\{{}\begin{matrix}m-1\le3\\2m\ge4\end{matrix}\right.\) \(\Rightarrow2\le m\le4\)
a/ ĐKXĐ:
\(\left\{{}\begin{matrix}3-x\ge0\\x+1\ge0\\x^2-5x+6\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le3\\x\ge-1\\x\ne\left\{2;3\right\}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-1\le x< 3\\x\ne2\end{matrix}\right.\)
b/ ĐKXĐ:
\(\left\{{}\begin{matrix}x-2m+3\ge0\\-x+m+5>0\\x\ne m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2m-3\\x< m+5\\x\ne m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-3\le x< m+5\\x\ne m\end{matrix}\right.\)
\(m+5>2m-3\Rightarrow m< 8\)
Để hàm số xác định trên \(\left(0;1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\left(0;1\right)\subset[2m-3;m+5)\\m< 8\\m\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-3\le0\\m+5\ge1\\m< 8\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4\le m\le\frac{3}{2}\\m< 8\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le m\le\frac{3}{2}\\-4\le m\le0\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne m\)
Để hàm số xác định trên \(\left(-1;2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le-1\\m\ge2\end{matrix}\right.\)
d/ Ta có \(a=1>0\) ; \(-\frac{b}{2a}=1\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(1;+\infty\right)\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left[2;5\right]\)
\(\Rightarrow\min\limits_{\left[2;5\right]}y=y\left(2\right)=2^2-2.2+2m+3\)
\(\Rightarrow2m+3=-3\)
\(\Rightarrow m=-3\)
Tìm tất cả giá trị thực m để hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định khoảng (1;3)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\) \(\Leftrightarrow m-1\le x< 2m\)
Để miền xác định của hàm khác rỗng \(\Rightarrow2m>m-1\Rightarrow m>-1\)
Khi đó để hàm xác định trên \(\left(1;3\right)\)
\(\Leftrightarrow\left(1;3\right)\subset[m-1;2m)\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\le1\\2m\ge3\end{matrix}\right.\) \(\Rightarrow\frac{3}{2}\le m\le2\)
Đề thiếu bạn, để hàm làm sao nhỉ?
ĐKXĐ: \(\left\{{}\begin{matrix}x-2m+3\ge0\\x\ne m\\-x+m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2m-3\\x\ne m\\x< m+5\end{matrix}\right.\)
Để TXĐ của hàm khác rỗng \(\Rightarrow m+5>2m-3\Rightarrow m< 8\)
Để hàm xác định trên \(\left(0;1\right)\Leftrightarrow\left\{{}\begin{matrix}2m-3\le0\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\\m+5\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le\frac{3}{2}\\m\ge-4\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\in\left[-4;0\right]\cup\left[1;\frac{3}{2}\right]\)