Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=\left(a^2+\left(-b\right)^2+c^2-2ab+2ac-2bc\right)-\left(b^2-2bc+c^2\right)+2ab-2ac\)
\(=a^2+b^2+c^2-2ab+2ac-2bc-b^2+2bc-c^2+2ab-2ac\)
\(=a^2+b^2-b^2+c^2-c^2-2ab+2ab+2ac-2ac-2bc+2bc\)
\(=a^2\)
a) Ta có F = \(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)
=> 8F = \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)
=> 8F = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)
=> 8F = \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)
=> 8F = \(\left(3^8-1\right)\left(3^8+1\right)-3^{16}=3^{16}-1-3^{16}=-1\)
=> F = -1/8
b) Ta có G = \(\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)-\frac{2^{24}}{7}\)
=> 7G = 7(23 + 1)(26 + 1)(212 + 1) - 224
=> 7G = (23 - 1)(23 + 1)(26 + 1)(212 + 1) - 224
=> 7G = (26 - 1)(26 + 1)(212 + 1) - 224
=> 7G = (212 - 1)(212 + 1) - 224
=> 7G = 224 - 1 - 224
=> 7G = -1
=> G = -1/7
\(F=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)
<=> \(\left(3^2-1\right)F=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\left(3^2-1\right)\frac{3^{16}}{8}\)
<=> \(8F=\left(3^4-1\right)\left(3^4+1\right)\left(3^8-1\right)-3^{16}\)
<=> \(8F=\left(3^8+1\right)\left(3^8-1\right)-3^{16}\)
<=> \(8F=\left(3^{16}-1\right)-3^{16}=-1\)
<=> F = -1/8
Câu G làm tương tự
rút gọn biểu thức
a)2x(2x−1)2−3x(x+3)(x−3)−4x(x+1)2
=2x(4x2-4x+1)-3x.(x2-9)-4x(x2+2x+1)
=8x3-8x2+2x-3x3-27x-4x3-8x2-4x
=8x3-16x2-7x3-29x
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(.........\)
\(=\frac{1}{2}\left(3^{32}-1\right)\)\(< \)\(3^{32}-1\)\(=\)\(A\)
Vậy \(B< A\)
Nếu đề thế này thì mình có thể làm được:
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=3^{32}-1\)
\(\Rightarrow A=\dfrac{3^{32}-1}{2}\)
=> B>A
Áp dụng HĐT đáng nhớ :
\(\left(a-b\right)\left(a+b\right)=a^2-b^2\) . Ta có :
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)
\(\Rightarrow A=\frac{3^{64}-1}{2}\)
Chúc bạn học tốt !!!
A*2=(3-1)*(3+1)*(3^2+1)*....*(3^16+1)
A*2=(3^2-1)*(3^2+1)*(3^4+1)....*(3^16+1)
A*2=((3^4)^2-1^2)*(3^4+1)......*(3*16+1)
2*A=(3^8-1)*...(3^16+1)
bạn lm tiếp nha
1: A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)
=(3^8-1)(3^8+1)(3^16+1)
=(3^16-1)(3^16+1)
=3^32-1
2: B=(1-3^2)(1+3^2)*...*(1+3^16)
=(1-3^4)(1+3^4)(1+3^8)(1+3^16)
=1-3^32
1
\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)\\ =3^{32}-1\)
\(B=\left(1-3\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^2\right)\left(1+3^2\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^4\right)\left(1+3^4\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^8\right)\left(1+3^8\right)\left(3^{16}+1\right)\\ =\left(1-3^{16}\right)\left(1+3^{16}\right)=1-3^{32}\)