Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)
\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)
Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5
2) a. \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)
\(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)
Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2
3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)
\(A^2=ab-bc-ac+bc\)
\(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)
\(A^2=0+a\left(b-c\right)\)
\(A^2=-20.\left(-5\right)=100\)
\(\Rightarrow A=10\)
Chúc bạn năm mới vui vẻ nha! Happy new year !
\(A=\left|x+5\right|+2019\)
\(\Rightarrow\left|x+5\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
\(\Rightarrow A_{min}=2019\Leftrightarrow x=-5\)
\(A=x^2+14\)
Ta có: \(x^2\ge0\forall x\in R\)
\(\Rightarrow A=x^2+14\le14\)
Dấu " = " xảy ra khi \(x=0\)
Khi đó: \(A=0+14=14\)
Vậy \(x=0\)khi đạt \(GTNN=14\)
\(B=\left(x+1\right)^2-12\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\in R\)
\(\Rightarrow B=\left(x+1\right)^2-12\ge-12\)
Dấu " =" xảy ra khi \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(x=-1\)khi đạt \(GTNN=-12\)
\(C=\left|x-5\right|+15\)
Ta có: \(\left|x-5\right|\le0\forall x\in R\)
\(\Rightarrow C=\left|x-5\right|+15\ge15\)
Dấu " = " xảy ra khi \(\left|x-5\right|=0\Rightarrow x=5\)
Vậy \(x=5\)khi đạt \(GTNN=15\)
\(D=\left|x-2\right|+\left|y+5\right|+19\)
Ta có: \(\left|x-2\right|\ge0\forall x\in R\)
\(\left|y+5\right|\ge0\forall y\in R\)
\(\Rightarrow D=\left|x-2\right|+\left|y+5\right|+19\ge19\)
Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=-5\end{cases}}}\)
Vậy \(x=2;y=-5\)khi đạt \(GTNN=19\)
hok tốt!!
Bài giải
a) Không tìm được GTLN
Tìm GTNN :
Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)
Vậy GTNN của \(\left|x-2\right|+2019\) là 2019
b, GTLN :
Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)
\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)
GTNN không tìm được
c, Quên cách làm rồi !
a) A= |x+2| + 2019
Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN
Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x
nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x
Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019
Khi đó: |x+2|=0
=> x+2 =0
=> x=-2
Vậy biểu thức A đạt GTNN là 2019 khi x= -2
b) B= 2018 - |x+1|
Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN
Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x
nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x
Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018
Khi đó: |x+1| =0
=> x+1 =0
=> x=-1
Vậy biểu thức B đạt GTLN là 2018 khi x =-1
c) C = |x-3| + |y-2| +2020
Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN
Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x
và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y
=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y
=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y
Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020
Khi đó: |x-3|=0 và |y-2|=0
=> x-3=0 và y-2=0
=> x=3 và y=2
Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2
a, Ta có: \(\left|x+2\right|\ge0\Rightarrow A=\left|x+2\right|+50\ge50\)
Dấu "=" xảy ra khi x=-2
Vậy GTNN của A=50 khi x=-2
b, Ta có: \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\Rightarrow B=\left|x-100\right|+\left|y+200\right|-1\ge-1\)
Dấu "=" xảy ra khi x=100,y=-200
Vậy GTNN của B=-1 khi x=100,y=-200
c, Đặt C = 2015-|x+5|
Ta có: \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow C=2015-\left|x+5\right|\le2015\)
Dấu "=" xảy ra khi x=-5
Vậy GTLN của C = 2015 khi x = -5
\(B=\left|5-x\right|+\left(y-1\right)^2+2019\)
Ta có: \(\hept{\begin{cases}\left|5-x\right|\ge0\\\left(y-1\right)^2\ge0\Rightarrow\end{cases}}\)\(B=\left|5-x\right|+\left(y-1\right)^2+2019\ge2019\)
\(\Rightarrow B_{min}=2019\Leftrightarrow\hept{\begin{cases}x=5\\y=1\end{cases}}\)
Vậy GTNN của B là 2019
Ta có:
\(|5-x|\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow B=|5-x|+\left(y-1\right)^2+2019\ge2019\)
\(\Rightarrow Min_B=2019\)
Giá trị nhỏ nhất của B là 2019 tại x =5 và y = 1