Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)
\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
\(\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)
Ta có :
\(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)
Ta thấy :
\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)
từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)
\(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)
\(\Leftrightarrow\left(\dfrac{1-x}{2017}+1\right)+\left(\dfrac{2-x}{2016}+1\right)=\left(\dfrac{3-x}{2015}+1\right)+\left(\dfrac{4-x}{2014}+1\right)\)
\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}=\dfrac{2018-x}{2015}+\dfrac{2018-x}{2014}\)
\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}-\dfrac{2018-x}{2015}-\dfrac{2018-x}{2014}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Mà \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
\(\Leftrightarrow2018-x=0\Leftrightarrow x=2018\)
Vậy ....
Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)
Mà \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)
\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)
\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)
\(\Rightarrow A>B.\)
Vậy \(A>B.\)
Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)
Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)
Vậy ......................
~ Học tốt ~
Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)
\(\dfrac{2016+x}{2017+x}\)=\(\dfrac{2018}{2017}\)
1-\(\dfrac{2016+x}{2017+x}=1-\dfrac{2018}{2017}\)
\(\dfrac{2017+x}{2017+x}-\dfrac{2016+x}{2017+x}=\dfrac{2017}{2017}-\dfrac{2018}{2017}\)
\(\dfrac{\left(2017+x\right)-\left(2016+x\right)}{2017+x}\)=\(\dfrac{2017-2018}{2017}\)
\(\dfrac{2017+x-2016-x}{2017+x}\) = \(\dfrac{-1}{2017}\)
\(\dfrac{\left(2017-2016\right)+\left(x-x\right)}{2017+x}\)= \(\dfrac{1}{-2017}\)
\(\dfrac{1}{2017+x}\) = \(\dfrac{1}{-2017}\)
2017+x = -2017
x = (-2017)-2017
x = -4034
Vậy x = -4034
x−42021+x−32020=x−22019+x−12018x−42021+x−32020=x−22019+x−12018
⇔ x−42021+x−32020−x−22019−x−12018=0x−42021+x−32020−x−22019−x−12018=0
⇔ (1+x−42021)+(1+x−32020)−(1+x−22019)−(1+x−12018)=0(1+x−42021)+(1+x−32020)−(1+x−22019)−(1+x−12018)=0⇔ x+20172021+x+20172020−x+20172019−x+20172018=0x+20172021+x+20172020−x+20172019−x+20172018=0
⇔ (x+2017)(12021+12020−12019−12018)=0(x+2017)(12021+12020−12019−12018)=0
⇔ x + 2017 = 0
⇔ x = -2017
\(\frac{x-1}{2020}+\frac{x-2}{2021}=\frac{x+1}{2018}+\frac{x+2}{2017}\)
\(\Leftrightarrow\frac{x-1}{2020}+1+\frac{x-2}{2021}-1=\frac{x+1}{2018}+1+\frac{x+2}{2017}+1\)
\(\Leftrightarrow\frac{x+2019}{2020}+\frac{x+2019}{2021}=\frac{x+2019}{2018}+\frac{x+2019}{2017}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
mà \(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\ne0\)
\(\Leftrightarrow x+2019=0\)
\(\Leftrightarrow x=-2019\)
\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2010}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
\(\Rightarrow x-2020=0\Leftrightarrow x=2020\)
vậy.......
\(\dfrac{x+2017}{x+2018}=\dfrac{2020}{2021}\)
\(\Leftrightarrow1-\dfrac{x+2017}{x+2018}=1-\dfrac{2020}{2021}\)
\(\Leftrightarrow\dfrac{x+2018}{x+2018}-\dfrac{x+2017}{x+2018}=\dfrac{2021}{2021}-\dfrac{2020}{2021}\)
\(\Leftrightarrow\dfrac{\left(x+2018\right)-\left(x+2017\right)}{x+2018}=\dfrac{2021-2020}{2021}\)
\(\Leftrightarrow\dfrac{x+2018-x-2017}{x+2018}=\dfrac{1}{2021}\)
\(\Leftrightarrow\dfrac{\left(2018-2017\right)+\left(x+x\right)}{x+2018}=\dfrac{1}{2021}\)
\(\Leftrightarrow\dfrac{1}{x+2018}=\dfrac{1}{2021}\)
\(\Leftrightarrow x+2018=2021\)
\(\Leftrightarrow x=3\left(tm\right)\)
vậy ....