K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

a) Biểu thức không phân tích được thành nhân tử. Bạn xem có nhầm dấu không.

b)

\(8x^2+4xy-2ax-ay=(8x^2+4xy)-(2ax+ay)\)

\(=4x(2x+y)-a(2x+y)=(4x-a)(2x+y)\)

c) Biểu thức không phân tích được thành nhân tử.

d)

\(3a^2-6ab+3b^2-12c^2\)

\(=(3a^2-6ab+3b^2)-12c^2=3(a^2-2ab+b^2)-12c^2\)

\(=3(a-b)^2-3.(2c)^2=3[(a-b)^2-(2c)^2]=3(a-b-2c)(a-b+2c)\)

e) Biểu thức không phân tích được thành nhân tử.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

f) Sửa:

\(x^2+y^2+2xy-m^2+2mn-n^2\)

\(=(x^2+2xy+y^2)-(m^2-2mn+n^2)\)

\(=(x+y)^2-(m-n)^2=(x+y-m+n)(x+y+m-n)\)

g) Biểu thức không phân tích được thành nhân tử. Nếu muốn phải thay $x^2$ thành $4x^2$ hoặc $y^2$ thành $4y^2$

h)

\(x^2-xy-3x+3y=(x^2-xy)-(3x-3y)=x(x-y)-3(x-y)=(x-3)(x-y)\)

k)

\(x^4-4x^3+8x^2+8x=x(x^3-4x^2+8x+8)\)

l)

\(16x^3y+\frac{1}{4}yz^3=\frac{1}{4}y(64x^3+z^3)=\frac{1}{4}y[(4x)^3+z^3]\)

\(=\frac{1}{4}y(4x+z)(16x^2-4xz+z^2)\)

26 tháng 9 2017

a) \(2x^2-2xy-5x+5y\)

\(=y\left(5-2x\right)-x\left(5-2x\right)\)

\(=\left(5-2x\right)\left(y-x\right).\)

b) \(8x^2+4xy-2ax-ay\)

\(=2x\left(4x-a\right)+y\left(4x-a\right)\)

\(=\left(2x+y\right)\left(4x-a\right)\)

c) \(x^3-4x^2+4x\)

\(=x\left(x^2-4x+4\right)\)

\(=x\left(x-2\right)^2\)

d) \(2xy-x^2-y^2+16\)

\(=-\left(x^2-2xy+y^2-4^2\right)\)

\(=-\left[\left(x-y\right)^2-4^2\right]\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

e) \(x^2-y^2-2yz-z^2\)

\(=x^2-\left(y^2+2yz+z^2\right)\)

\(=x^2-\left(y+z\right)^2\)

\(=\left(x-y+z\right)\left(x+y+z\right)\)

g) \(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2-4c^2\right)\)

\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)

\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)

24 tháng 10 2020

a) ax + ay - bx - by = ( ax - bx ) + ( ay - by ) = x( a - b ) + y( a - b ) = ( a - b )( x + y ) < đã sửa >

b) 2x2 - 6xy + 5x - 15y = 2x( x - 3y ) + 5( x - 3y ) = ( x - 3y )( 2x + 5 )

c) ( a + b )2 - 4a2 = ( a + b )2 - ( 2a )2 = ( a + b - 2a )( a + b + 2a ) = ( b - a )( b + 3a )

d) 5a2xy - 10a3x - 15a2x2 = 5a2x( y - 2a - 3x )

e) 3( x - 1 ) + 5x( x - 1 ) = ( x - 1 )( 3 + 5x )

f) 9a2 - 4 = ( 3a )2 - 22 = ( 3a - 2 )( 3a + 2 )

g) 2x3 + 8x4 + 8x = 2x( x + 4x2 + 4 ) 

h) a2 - 4 + 4b - b2 = a2 - ( b2 - 4b + 4 ) = a2 - ( b - 2 )2 = ( a - b + 2 )( a + b - 2 )

i) a2 + 2ab + b2 - 16 = ( a2 + 2ab + b2 ) - 16 = ( a + b )2 - 42 = ( a + b - 4 )( a + b + 4 )

k) x2 + 5x + 4 = x2 + x + 4x + 4 = x( x + 1 ) + 4( x + 1 ) = ( x + 1 )( x + 4 )

l) 2x2 - 3x - 5 = 2x2 + 2x - 5x - 5 = 2x( x + 1 ) - 5( x + 1 ) = ( x + 1 )( 2x - 5 )

m) x3 + 6x2 + 9x = x( x2 + 6x + 9 ) = x( x + 3 )2

8 tháng 9 2020

A = xy + y - 2x - 2

= y( x + 1 ) - 2( x + 1 )

= ( x + 1 )( y - 2 )

B = x2 - 3x + xy - 3y

= x( x - 3 ) + y( x - 3 )

= ( x - 3 )( x + y )

C = 3x2 - 3xy - 5x + 5y

= 3x( x - y ) - 5( x - y )

= ( x - y )( 3x - 5 )

D = xy + 1 + x + y

= y( x + 1 ) + ( x + 1 )

= ( x + 1 )( y + 1 )

E = ax - bx + ab - x2

= ( ax - x2 ) + ( ab - bx )

= x( a - x ) + b( a - x )

= ( a - x )( x + b )

F = x2 + ab + ax + bx

= ( ax + x2 ) + ( ab + bx )

= x( a + x ) + b( a + x )

= ( a + x )( x + b )

G = a3 - a2x - ay + xy

= a2( a - x ) - y( a - x )

= ( a - x )( a2 - y )

Bonus : = ( a - x )[ a2 - ( √y )2 ]

             = ( a - x )( a - √y )( a + √y )

H = 2xy + 3z + 6y + xz

= ( 6y + 2xy ) + ( 3z + xz )

= 2y( 3 + x ) + z( 3 + x )

= ( 3 + x )( 2y + z )

8 tháng 9 2020

A = xy + y - 2x - 2 = y(x + 1) - 2(x + 1) = (y - 2)(x + !1

B = x2 - 3x + xy - 3y = x(x - 3) + y(x - 3) = (x + y)(x - 3)

C = 3x2 - 3xy - 5x + 5y = 3x(x - y) - 5(x - y) = (3x - 5)(x - y)

D = xy + 1 + x + y = xy + x + y + 1 = x(y + 1) + (y + 1) = (x + 1)(y + 1)

E = ax - bx + ab - x2 = ax - x2 + ab - bx = a(a - x) - b(a - x) = (a - b)(a - x)

F = x2 + ab + ax + bx = ab + ax + bx + x2 = a(b + x) + x(b + x) = (a + x)(b + x)

G = a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)

H = 2xy + 3z + 6y + xz = 2xy + 6y + 3z + xz = 2y(x + 3) + z(x + 3) = (2y + z)(x + 3)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

17 tháng 7 2019

\(a,xy+1-x-y\)

\(=\left(xy-y\right)+\left(1-x\right)\)

\(=y\left(x-1\right)- \left(x-1\right)\)

\(=\left(x-1\right)\left(y-1\right)\)

\(b,ax+ay-3x-3y\)

\(=a\left(x+y\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(a-3\right)\)

\(c,x^3-2x^2+2x-4\)

\(=x^2\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x^2+2\right)\left(x-2\right)\)

\(d,x^2+ab+ax+bx\)

\(=\left(x^2+ax\right)+\left(ab+bx\right)\)

\(=x\left(a+x\right)+b\left(a+x\right)\)

\(=\left(a+x\right)\left(b+x\right)\)

\(e,16-x^2+2xy-y^2\)

\(=4^2-\left(x^2-2xy+y^2\right)\)

\(=4^2-\left(x-y\right)^2\)

\(=\left(4-x+y\right)\left(4+x-y\right)\)

17 tháng 7 2019

\(f,ax^2+ax-bx^2-bx-a+b\)

\(=\left(ax^2-bx^2\right)+\left(ax-bx\right)-\left(a-b\right)\)

\(=x^2\left(a-b\right)+x\left(a-b\right)-\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+x-1\right)\)

7 tháng 2 2020

a, 5x2 - 45x = 5x(x - 9)

b, 3x3y - 6x2y - 3xy3 - 6axy2 - 3a2xy + 3xy

= 3xy(x2 - 2x - y2 - 2ay - a2 + 1)

= 3xy[ (x2 - 2x + 1) - (a2 + 2ay + y2) ]

= 3xy[ (x - 1)2 - (a + y)2 ]

= 3xy(x - 1 + a + y)(x - 1 - a - y)

f, 3xy2 - 12xy + 12x

= 3x(y2 - 4y + 4)

= 3x(y - 2)2

g, 2x2 - 8x + 8

= 2(x2 - 4x + 4)

= 2(x - 2)2

h, 5x3 + 10x2y + 5xy2

= 5x( x2 + 2xy + y2 )

= 5x(x + y)2

k, x2 + 4x - 2xy - 4y + y2

= (x2 - 2xy + y2) + (4x - 4y)

= (x - y)2 + 4(x - y)

= (x - y)(x - y + 4)

i, x3 + ax2 - 4a - 4x

= (x3 - 4x) + (ax2 - 4a)

= x(x2 - 4) + a(x2 - 4)

= (x + a)(x2 - 4)

= (x + a)(x + 2)(x - 2)

Chúc bạn học tốt !

11 tháng 2 2020

thanks

26 tháng 9 2017

a) \(8x^2+4xy-2x-ay\)

\(=4x\left(2x+y\right)-a\left(2x+y\right)\)

\(=\left(2x+y\right)\left(4x-a\right)\)

b) \(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2-4c^2\right)\)

\(=3\left[\left(a-b\right)^2-4c^2\right]\)

\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)

c) \(x^2-2xy+y^2-m^2+2mn-n^2\)

\(=\left(x^2-2xy+y^2\right)-\left(m^2-2mn+n^2\right)\)

\(=\left(x-y\right)^2-\left(m-n\right)^2\)

\(=\left(x-y+m-n\right)\left(x-y-m+n\right)\)

NV
16 tháng 10 2019

\(A=2x^4+4x^3-7x^3-14x^2+8x^2+16x\)

\(=2x^2\left(x^2+2x\right)-7x\left(x^2+2x\right)+8\left(x^2+2x\right)\)

\(=\left(2x^2-7x+8\right)\left(x^2+2x\right)\)

\(=x\left(x+2\right)\left(2x^2-7x+8\right)\)

\(B=2x\left(x^2-4x+4-y^2\right)\)

\(=2x\left(\left(x-2\right)^2-y^2\right)\)

\(=2x\left(x-y-2\right)\left(x+y-2\right)\)

\(C=x\left(8y^2+8xy+2x^2-z^2\right)\)

\(=x\left(2\left(4y^2+4xy+x^2\right)-z^2\right)\)

\(=x\left(2\left(x+2y\right)^2-z^2\right)\)

\(=x\left(\sqrt{2}x+2\sqrt{2}y-z\right)\left(\sqrt{2}x+2\sqrt{2}y+z\right)\)

NV
16 tháng 10 2019

\(D=4a^4+10a^3+6a^2-6a^2-15a-9\)

\(=2a^2\left(2a^2+5a+3\right)-3\left(2a^2+5a+3\right)\)

\(=\left(2a^2-3\right)\left(2a^2+5a+3\right)\)

\(E=4a^3-ab^2+2ab-4a^2\)

\(=a\left(4a^2-b^2\right)-2a\left(2a-b\right)\)

\(=a\left(2a+b\right)\left(2a-b\right)-2a\left(2a-b\right)\)

\(=\left(2a-b\right)\left(2a^2+ab-2a\right)\)

\(F=5a^2-10a-4a+8\)

\(=5a\left(a-2\right)-4\left(a-2\right)\)

\(=\left(5a-4\right)\left(a-2\right)\)

\(G=a\left(2x+3y\right)-\left(2x+3y\right)\)

\(=\left(a-1\right)\left(2x+3y\right)\)