K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2015

@Ta chứng minh \(2,5<\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)\(<3\) bằng quy nạp.

+Với n = 1, 2, 3 thì điều trên đúng.

+Giả sử điều trên đúng với n = k ( k≥1 ), tức là \(2,5<\sqrt{6+\sqrt{6+...}}\)\(<3\) với k dấu căn.

+Ta chứng minh điều đó đúng với n = k+1 tức là \(2,5<\sqrt{6+\sqrt{6+...}}\)\(<3\) với k+1 dấu căn

Thật vậy, ta có: \(2,5<\sqrt{6+\sqrt{6+...}}\text{(k dấu căn) }<3\)

\(\Rightarrow8,5<6+\sqrt{6+\sqrt{6+...}}\text{ (k dấu căn) }<9\)

\(\Rightarrow\sqrt{8,5}<\sqrt{6+\sqrt{6+\sqrt{6+...}}}\text{ (k+1 dấu căn)}<3\)

\(\Rightarrow2,5<\sqrt{6+\sqrt{6+..}}\left(k+1\text{ dấu căn}\right)<3\)

Vậy \(2,5<\sqrt{6+\sqrt{6+\sqrt{...}}}<3\) 

@Chứng minh tương tự ta cũng có: \(1,5<\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{...}}}<2\)

Vậy \(2,5+1,5<\)\(\sqrt{...}+\sqrt[3]{...}<3+2\)

\(\Rightarrow4<\)\(\sqrt{...}+\sqrt[3]{....}<\)\(5\)

Vậy phần nguyên là 4.

8 tháng 8 2015

Dòng đầu bổ sung thêm "(n dấu căn)"

12 tháng 8 2017

Mih chỉ lm đc câu R thôi:

\(R=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}}\)

\(\Rightarrow R^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}\)

\(\Rightarrow\left(R^2-5\right)^2=13+\sqrt{5+\sqrt{13+\sqrt{5...}}}\)

\(\Rightarrow R^4-10R^2+12=R\) (Vì R là lặp lại vô hạn cách viết nên nếu  mũ chẵn lên thì R vẫn là R)

\(\Rightarrow\left(R-3\right)\left(R^3+3R^2-R-4\right)=0\)

Mà \(R^3+3R^2-R-4=\left(R+3\right)\left(R-1\right)\left(R+1\right)-1>0\forall R>\sqrt{5}\)

Nên ta dễ dàng suy ra đc R-3=0 => R=3

12 tháng 8 2017

 câu R có trên đienantoanhoc òi

25 tháng 7 2019

\(a,\left(3\sqrt{\frac{3}{5}}-\sqrt{\frac{5}{3}}+\sqrt{5}\right)2\sqrt{5}+\frac{2}{3}\sqrt{75}\)

\(=6\sqrt{3}-\frac{10\sqrt{3}}{3}+10+\frac{10\sqrt{3}}{3}\)

\(=6\sqrt{3}+10\)

\(b,\left(\sqrt{3}-1\right)^2-\sqrt{\left(1-\sqrt{3}\right)^2}+\sqrt{\left(-3\right)^2.3}\)

\(=\left(\sqrt{3}^2-2.\sqrt{3}.1+1^2\right)-|1-\sqrt{3}|+\sqrt{27}\)

\(=4-2\sqrt{3}-\sqrt{3}+1+3\sqrt{3}\)

\(=5\)

\(P=\frac{a-b}{\sqrt{a}+\sqrt{b}}+\frac{a\sqrt{a}-b\sqrt{b}}{a+b+\sqrt{ab}}\left(a\ge0;b\ge0;a\ne b\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a+b+\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}+\sqrt{a}-\sqrt{b}\)

\(=2\sqrt{a}-2\sqrt{b}\)

27 tháng 10 2019

a)\(A=^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)

=>  \(A^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)

\(=20+14\sqrt{2}+20-14\sqrt{2}\)

\(+3\left(\text{​​}^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\right)\left(^3\sqrt{20+14\sqrt{2}}.^3\sqrt{20-14\sqrt{2}}\right)\)

\(=40+3A.^3\sqrt{\left(20+14\sqrt{2}\right)\left(20+14\sqrt{2}\right)}\)

\(\Rightarrow A^3=40+3.A.2\)

=> \(A^3-6A-40=0\)

<=> \(A^3-16A+10A-40=0\)

<=> \(A\left(A-4\right)\left(A+4\right)+10\left(A-4\right)=0\)

<=> \(\left(A-4\right)\left(A^2+4A+10\right)=0\)

<=> A = 4 ( vì \(A^2+4A+10=\left(A+2\right)^2+6>0\))

Vậy A = 4.

b/ \(B=^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)

=> \(B^3=\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right)^3\)

\(=26+15\sqrt{3}-26+15\sqrt{3}\)

\(-3\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right).^3\sqrt{26+15\sqrt{3}}.^3\sqrt{26-15\sqrt{3}}\)

\(=30\sqrt{3}-3B.1\)

=> \(B^3+3B-30\sqrt{3}=0\)

<=> \(B^3-12B+15B-30\sqrt{3}=0\)

<=> \(B\left(B-2\sqrt{3}\right)\left(B+2\sqrt{3}\right)+15\left(B-2\sqrt{3}\right)=0\)

<=> \(\left(B-2\sqrt{3}\right)\left(B^2+2\sqrt{3}B+15\right)=0\)

<=> \(B-2\sqrt{3}=0\)( vì \(B^2+2\sqrt{3}B+15=\left(B+\sqrt{3}\right)^2+12>0\))

<=> \(B=2\sqrt{3}\)

8 tháng 9 2020

2. a) \(ĐKXĐ:x\ge\frac{1}{3}\)

 \(\sqrt{3x-1}=4\)\(\Rightarrow\left(\sqrt{3x-1}\right)^2=4^2\)

\(\Leftrightarrow3x-1=16\)\(\Leftrightarrow3x=17\)\(\Leftrightarrow x=\frac{17}{3}\)( thỏa mãn ĐKXĐ )

Vậy \(x=\frac{17}{3}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{x-1}=x-1\)\(\Rightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=x^2-2x+1\)\(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x^2-3x+2=0\)\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)( thỏa mãn ĐKXĐ )

Vậy \(x=1\)hoặc \(x=2\)

3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)

Vì \(6>1\)\(\Leftrightarrow\sqrt{6}>\sqrt{1}=1\)\(\Rightarrow\sqrt{6}-1>0\)

\(6>4\)\(\Rightarrow\sqrt{6}>\sqrt{4}=2\)\(\Rightarrow\sqrt{6}-2>0\)

\(\Rightarrow\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|=\left(\sqrt{6}-1\right)-\left(\sqrt{6}-2\right)\)

\(=\sqrt{6}-1-\sqrt{6}+2=1\)

hay \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=1\)

8 tháng 9 2020

2a) \(\sqrt{3x-1}=4\)( ĐKXĐ : \(x\ge\frac{1}{3}\))

Bình phương hai vế

\(\Leftrightarrow\left(\sqrt{3x-1}\right)^2=4^2\)

\(\Leftrightarrow3x-1=16\)

\(\Leftrightarrow3x=17\)

\(\Leftrightarrow x=\frac{17}{3}\)( tmđk )

Vậy phương trình có nghiệm duy nhất là x = 17/3

b) \(\sqrt{x-1}=x-1\)( ĐKXĐ : \(x\ge1\))

Bình phương hai vế 

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=x^2-2x+1\)

\(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)

Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2

3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)

\(=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}-\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot2+2^2}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}\)

\(=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)

\(=\sqrt{6}-1-\left(\sqrt{6}-2\right)\)

\(=\sqrt{6}-1-\sqrt{6}+2\)

\(=1\)

19 tháng 12 2016

Mình chỉ biến đổi mấy cái căn chồng căn theo nhá:

\(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)

\(\sqrt{7-4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)

\(\sqrt{2+\sqrt{3}}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

25 tháng 12 2018

bạn làm bài nào thế ?