Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
bài 1:
|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1
a
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5
= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5
= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5
= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)
b) +) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1
= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)
+) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1
= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)
bài 3
x.y.z = 2 và x + y + z = 0
A = ( x + y )( y +z )( z + x )
= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )
= 0 + 2 = 2
bài 4
a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)
=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)
2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0
x = 0 : 2 = 2
a/ Thay: \(x=\frac{1}{2};y=-\frac{1}{3}\) vào A ta có:
A = 3x3y + 6x2y2 + 3xy3
A = \(3.\left(\frac{1}{2}\right)^3.\left(-\frac{1}{3}\right)+6.\left(\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)^2+3.\frac{1}{2}.\left(-\frac{1}{3}\right)^3\)
A = \(3.\frac{1}{8}.\left(-\frac{1}{3}\right)+6.\frac{1}{4}.\frac{1}{9}+3.\frac{1}{2}.\frac{1}{27}\)
A = \(-\frac{1}{8}+\frac{1}{6}+\frac{1}{18}\)
A = \(\frac{7}{72}\)
b/ Thay \(x=-1;y=3\) vào B ta có:
B = x2y2 +xy + x3 + y3
B = \(\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)
B = \(1.9+\left(-3\right)+\left(-1\right)+27\)
B = 32
a) A= -1/72
b) B= 32
Sorry vì ko bấm phân số được. Vote cho mình nha :3
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
B1
a) 3x2y3.(-6x3y )
\(=\left(3.-6\right)\left(x^2.x^3\right)\left(y^3y\right)\)
\(=-18x^5y^{\text{4 }}\)
B2
a), b)
\(A=\left(\frac{-3}{7}x^2y^2z\right).\left(\frac{-42}{9}xy^2z^2\right)\)
\(A=\left(\frac{-3}{7}.\frac{-42}{9}\right)\left(x^2.x\right)\left(y^2.y^2\right)\left(z.z^2\right)\)
\(A=2x^3y^4z^3\) - Bậc 10
Hệ số : 2
c) Thay x = 2 , y = 1 , z = -1 vào biểu thức A , ta có :
\(A=2.2^3.1^4.\left(-1\right)^3\)
\(A=2.8.1.\left(-1\right)\)
A = -16
Vậy , tại x = 2 , y = 1 , z = -1 thì A = -16
Bài 1 :
\(a,-5x^2-2x^2=-7x^2\)
\(b,x^2+\left(-x^2\right)+x^5=x^5\)
Bài 2 :
- Ta có : \(xy^3+5xy^3+\left(-7\right)xy^3\)
\(=xy^3\left(1+5-7\right)\)
\(=-xy^3\)
- Thay x = 2 và y =-1 vào biểu thức trên ta được :
\(-2.\left(-1\right)^3=\left(-2\right).\left(-1\right)=2\)
Bài 3 :
Ta có : \(x^{2016}y^{2016}+5x^{2016}y^{2016}-3x^{2016}y^{2016}\)
\(=3x^{2016}y^{2016}\)
- Thay x = 1 và y = -1 vào biểu thức trên ta được :
\(3.1^{2016}.\left(-1\right)^{2016}=3.1.1=3\)
a: \(P=-5x^3+6x^2-2x\)
\(=-5\cdot\left(-1\right)^3+6\cdot\left(-1\right)^2-2\cdot\left(-1\right)\)
\(=-5\cdot\left(-1\right)+6+2=5+6+2=13\)
b: \(Q=-2\cdot\left(-\dfrac{1}{3}\right)^2\cdot\dfrac{11}{4}+4\cdot\dfrac{11}{4}+11\cdot\dfrac{1}{9}\cdot\dfrac{11}{4}\)
\(=-\dfrac{11}{2}\cdot\dfrac{1}{9}+11+\dfrac{121}{36}=\dfrac{55}{4}\)